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Back to Bayes



A simple example

• Let us take a simple example to fix ideas.
• 120 deer were radio-tracked over winter.
• 61 close to a plant, 59 far from any human activity.
• Question: is there a treatment effect on survival?

Released Alive Dead Other

treatment 61 19 38 4
control 59 21 38 0
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• So, n = 57 deer were assigned to the treatment group of which k = 19 survived the
winter.

• Of interest is the probability of over-winter survival, call it θ, for the general
population within the treatment area.

• The obvious estimate is simply to take the ratio k/n = 19/57.

• How would the classical statistician justify this estimate?
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• Our model is that we have a Binomial experiment (assuming independent and
identically distributed draws from the population).

• K the number of alive individuals at the end of the winter, so that
P(K = k) =

(n
k
)
θk(1 − θ)n−k .

• The classical approach is to maximise the corresponding likelihood with respect to θ

to obtain the entirely plausible MLE:

θ̂ = k/n = 19/57

.
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The Bayesian approach

• The Bayesian starts off with a prior.

• Now, the one thing we know about θ is that is a continuous random variable and
that it lies between zero and one.

• Thus, a suitable prior distribution might be the Beta defined on [0, 1].

• What is the Beta distribution?
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What is the Beta distribution?

q(θ | α, β) = 1
Beta(α, β)θα−1(1 − θ)β−1

with Beta(α, β) = Γ(α)Γ(β)
Γ(α + β) and Γ(n) = (n − 1)!
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The Bayesian approach

• We assume a priori that θ ∼ Beta(a, b) so that Pr(θ) = θa−1(1 − θ)b−1

• Then we have:

Pr(θ | k) ∝
(

n
k

)
θk(1 − θ)n−k θa−1(1 − θ)b−1

∝ θ(a+k)−1(1 − θ)(b+n−k)−1

• That is:

θ | k ∼ Beta(a + k, b + n − k)

• Take a Beta prior with a Binomial likelihood, you get a Beta posterior (conjugacy)
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Application to the deer example

• Posterior distribution of survival is θ ∼ Beta(a + k, b + n − k).

• If we take a Uniform prior, i.e. Beta(1, 1), then we have:

• θtreatment ∼ Beta(1 + 19, 1 + 57 − 19) = Beta(20, 39)

• Note that in this specific situation, the posterior has an explicit expression, easy to
manipulate.

• In particular, E (Beta(a, b)) = a
a + b = 20/59 to be compared with the MLE 19/57.
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A general result

This is a general result, the Bayesian and frequentist estimates will always agree
if there is sufficient data, so long as the likelihood is not explicitly ruled out by
the prior.
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Prior Beta(1, 1) and posterior survival Beta(20, 39)
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Notation

Our model so far

y ∼ Binomial(N, θ) [likelihood]
θ ∼ Beta(1, 1) [prior for θ]
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