
Welcoming words
The team

last updated: 2021-05-15

How it all started Where we're at

Olivier Gimenez
@oaggimenez

 Inference about animal demographic
parameters: Bayesian analysis of capture-
recapture data using Jags/Nimble. May 17-18,
2021. Remote workshop. Free of charge. Video-
recorded.

 Registration is up and running bit.ly/2Migkyd
 Details in the thread.

Olivier Gimenez @oaggimenez

 Anyone interested in a (remote) Bayesian workshop
on capture-recapture models (single/multistate, multievent
models) with Jags and Nimble, in April/May?

9�22 AM · Jan 29, 2021

134 9 Copy link to Tweet

https://twitter.com/oaggimenez?ref_src=twsrc%5Etfw%7Ctwcamp%5Etweetembed%7Ctwterm%5E1355068873746362368%7Ctwgr%5E%7Ctwcon%5Es1_&ref_url=http%3A%2F%2F127.0.0.1%3A7153%2F1_welcome.html1
https://twitter.com/oaggimenez?ref_src=twsrc%5Etfw%7Ctwcamp%5Etweetembed%7Ctwterm%5E1355068873746362368%7Ctwgr%5E%7Ctwcon%5Es1_&ref_url=http%3A%2F%2F127.0.0.1%3A7153%2F1_welcome.html1
https://twitter.com/oaggimenez/status/1355068873746362368?ref_src=twsrc%5Etfw%7Ctwcamp%5Etweetembed%7Ctwterm%5E1355068873746362368%7Ctwgr%5E%7Ctwcon%5Es1_&ref_url=http%3A%2F%2F127.0.0.1%3A7153%2F1_welcome.html1
https://t.co/wB94IWtBKY?amp=1
https://twitter.com/oaggimenez/status/1355068873746362368?ref_src=twsrc%5Etfw%7Ctwcamp%5Etweetembed%7Ctwterm%5E1355068873746362368%7Ctwgr%5E%7Ctwcon%5Es1_&ref_url=http%3A%2F%2F127.0.0.1%3A7153%2F1_welcome.html1
https://help.twitter.com/en/twitter-for-websites-ads-info-and-privacy
https://twitter.com/intent/like?ref_src=twsrc%5Etfw%7Ctwcamp%5Etweetembed%7Ctwterm%5E1355068873746362368%7Ctwgr%5E%7Ctwcon%5Es1_&ref_url=http%3A%2F%2F127.0.0.1%3A7153%2F1_welcome.html1&tweet_id=1355068873746362368
https://twitter.com/oaggimenez?ref_src=twsrc%5Etfw%7Ctwcamp%5Etweetembed%7Ctwterm%5E1355068873746362368%7Ctwgr%5E%7Ctwcon%5Es1_&ref_url=http%3A%2F%2F127.0.0.1%3A7153%2F1_welcome.html1

What this workshop is about

Estimating demographic parameters with capture-recapture.

Using a family of models called hidden Markov models (HMM).

Within the Bayesian framework implemented with Markov chain Monte Carlo
methods (MCMC).

Credits and inspiration

Past workshops on capture-recapture models w/ Roger Pradel, Rémi Choquet and
Jean-Dominique Lebreton.

Past workshops on Bayesian analyses for population ecology with Ruth King, Steve
Brooks and Byron Morgan.

Workshops on Nimble by Chris Paciorek, Daniel Turek and Perry de Valpine.

Workshops on integrated population modeling with Michael Schaub and Marc Kéry.

Books by Marc Kéry, Michael Schaub, Andy Royle and others — check out curated list.

Daniel Turek's sabbatical in the team.

https://www.mbr-pwrc.usgs.gov/pubanalysis/roylebook/

The team

On our plate

Day 1

Crash course on Bayesian statistics and MCMC algorithms
Free the modeler in you: Introduction to Nimble
What you see is not what you get: Hidden Markov models and capture-recapture
Dead or alive: Survival estimation

Day 2

On the move: Transition estimation
Known knowns, unknown knowns and unknowns: Uncertainty in state assignment
Skip your coffee break: Speed up MCMC convergence
Take-home messages

Philosophy of teaching

Lots of attendees, with huge heterogeneity in knowledge of capture-recapture
models, Bayesian methods, R and Nimble.

It is our hope that everyone will �nd something to take home.

We've packed a lot of things in two days.

We do not expect you to digest everything.

All material (including videos) on website https://oliviergimenez.github.io/bayesian-
cr-workshop/.

Feel free to play around with material while we walk through it, and afterwards.

The workshop is organized in modules, each module is a combination of lectures and
live demos.

https://oliviergimenez.github.io/bayesian-cr-workshop/

The way we will interact with each other

Lectures and live coding demos will happen in Zoom, same link for both days.

Everything is video recorded.

Questions and answers via Slack, with a speci�c channel per module.

Crash course on Bayesian statistics and
MCMC algorithms

The team

last updated: 2021-05-11

A theorem about conditional
probabilities.

Bayes' theorem spelt out in blue neon at
the of�ces of Autonomy in Cambridge.
Source: Wikipedia

Bayes' theorem

Pr(B ∣ A) =
Pr(A ∣ B) Pr(B)

Pr(A)

Bayes' theorem
I always forget what the letters mean.

Might be easier to remember when written like this:

The "hypothesis" is typically something unobserved or unknown. It's what you want
to learn about using the data.

For regression models, the "hypothesis" is a parameter (intercept, slopes or error
terms).

Bayes theorem tells you the probability of the hypothesis given the data.

Pr(hypothesis ∣ data) =
Pr(data ∣ hypothesis) Pr(hypothesis)

Pr(data)

What is doing science after all?

How plausible is some hypothesis given the data?

Pr(hypothesis ∣ data) =
Pr(data ∣ hypothesis) Pr(hypothesis)

Pr(data)

Why is Bayesian statistics not the default?
Due to practical problems of implementing the Bayesian approach, and futile wars
between (male) statisticians, little progress was made for over two centuries.

Recent advances in computational power coupled with the development of new
methodology have led to a great increase in the application of Bayesian methods
within the last two decades.

Frequentist versus Bayesian
Typical stats problems involve estimating parameter with available data.

The frequentist approach (maximum likelihood estimation – MLE) assumes that the
parameters are �xed, but have unknown values to be estimated.

Classical estimates are generally point estimates of the parameters of interest.

The Bayesian approach assumes that the parameters are not �xed but have some
�xed unknown distribution - a distribution for the parameter.

θ

What is the Bayesian approach?
The approach is based upon the idea that the experimenter begins with some prior
beliefs about the system.

And then updates these beliefs on the basis of observed data.

This updating procedure is based upon the Bayes' Theorem:

Pr(A ∣ B) =
Pr(B ∣ A) Pr(A)

Pr(B)

What is the Bayesian approach?
Schematically if and , then

The Bayes' theorem

Translates into:

A = θ B = data

Pr(A ∣ B) =
Pr(B ∣ A) Pr(A)

Pr(B)

Pr(θ ∣ data) =
Pr(data ∣ θ) Pr(θ)

Pr(data)

Bayes' theorem

: Represents what you know after having seen the data. The
basis for inference, a distribution, possibly multivariate if more than one parameter.

: This quantity is the same as in the MLE approach.

: Represents what you know before seeing the data. The source
of much discussion about the Bayesian approach.

 is a -dimensional integral if .

Dif�cult if not impossible to calculate. This is one of the reasons why we need
simulation (MCMC) methods.

Pr(θ ∣ data) =
Pr(data ∣ θ) Pr(θ)

Pr(data)

Posterior distribution

Likelihood

Prior distribution

Pr(data) = ∫ L(data ∣ θ) Pr(θ)dθ N θ = θ1, … , θN

Brute force via numerical integration
Say we release animals at the beginning of the winter, out of which survive, and
we'd like to estimate winter survival .

y <- 19 # nb of success
n <- 57 # nb of attempts

Our model:

n y
θ

y ∼ Binomial(n, θ) [likelihood]

θ ∼ Beta(1, 1) [prior for θ]

Beta prior

Apply Bayes theorem
Likelihood times the prior:

numerator <- function(p) dbinom(y,n,p) * dbeta(p,a,b)

Averaged likelihood:

denominator <- integrate(numerator,0,1)$value

Pr(data ∣ θ) Pr(θ)

Pr(data) = ∫ L(θ ∣ data) Pr(θ)dθ

Posterior via numerical integration

Superimpose explicit posterior

And the prior

What if multiple parameters?
Example of a linear regression with parameters , and to be estimated.

Bayes' theorem says:

Do we really wish to calculate a 3D integral?

α β σ

P(α,β,σ ∣ data) =
P(data ∣ α,β,σ)P(α,β,σ)

∭ P(data ∣ α,β,σ)P(α,β,σ) dα dβ dσ

Bayesian computation
In the early 1990s, statisticians rediscovered work from the 1950's in physics.

Bayesian computation
In the early 1990s, statisticians rediscovered work from the 1950's in physics.

Use stochastic simulation to draw samples from posterior distributions.

Avoid explicit calculation of integrals in Bayes formula.

Instead, approx. posterior w/ some precision by drawing large samples.

Markov chain Monte Carlo (MCMC) gives a boost to Bayesian statistics!

Why are MCMC methods so useful?
MCMC are stochastic algorithms to produce sequence of dependent random
numbers from a Markov chain.

A Markov chain is a discrete sequence of states, in which the probability of an event
depends only on the state in the previous event.

A Markov chain has an equilibrium (aka stationary) distribution.

Equilibrium distribution is the desired posterior distribution!

Several ways of constructing these chains: e.g., Metropolis-Hastings, Gibbs sampler.

How to implement them in practice?!

The Metropolis algorithm
Let's go back to animal survival estimation.

We illustrate sampling from the posterior distribution.

We write functions in R for the likelihood, the prior and the posterior.

survival data, 19 "success" out of 57 "attempts"
survived <- 19
released <- 57

log-likelihood function
loglikelihood <- function(x, p){
 dbinom(x = x, size = released, prob = p, log = TRUE)
}

prior density
logprior <- function(p){
 dunif(x = p, min = 0, max = 1, log = TRUE)
}

posterior density function (log scale)
posterior <- function(x, p){
 loglikelihood(x, p) + logprior(p) # - log(Pr(data))
}

Metropolis algorithm

1. We start at any possible value of the parameter to be estimated.

2. To decide where to visit next, we propose to move away from the current value of the
parameter — this is a candidate value. To do so, we add to the current value some
random value from say a normal distribution with some variance.

3. We compute the ratio of the probabilities at the candidate and current locations
. This is where the magic of MCMC

happens, in that , the denominator of the Bayes theorem, cancels out.

4. We spin a continuous spinner that lands anywhere from 0 to 1 — call it the random
spin . If is smaller than , we move to the candidate location, otherwise we
remain at the current location.

5. We repeat 2-4 a number of times — or steps (many steps).

R = posterior(candidate)/posterior(current)
Pr(data)

X X R

propose candidate value
move <- function(x, away = .2){
 logitx <- log(x / (1 - x))
 logit_candidate <- logitx + rnorm(1, 0, away)
 candidate <- plogis(logit_candidate)
 return(candidate)
}

set up the scene
steps <- 100
theta.post <- rep(NA, steps)
set.seed(1234)

pick starting value (step 1)
inits <- 0.5
theta.post[1] <- inits

for (t in 2:steps){ # repeat steps 2-4 (step 5)

 # propose candidate value for prob of success (step 2)
 theta_star <- move(theta.post[t-1])

 # calculate ratio R (step 3)
 pstar <- posterior(survived, p = theta_star)
 pprev <- posterior(survived, p = theta.post[t-1])
 logR <- pstar - pprev
 R <- exp(logR)

 # decide to accept candidate value or to keep current value (s
 accept <- rbinom(1, 1, prob = min(R, 1))
 theta.post[t] <- ifelse(accept == 1, theta_star, theta.post[t-
}

Starting at the value and running the algorithm for iterations.

head(theta.post)

[1] 0.5000000 0.4399381 0.4399381 0.4577124 0.4577124 0.4577124

tail(theta.post)

[1] 0.4145878 0.3772087 0.3772087 0.3860516 0.3898536 0.3624450

0.5 100

A chain

Another chain

With 5000 steps

In yellow: posterior mean; in red: maximum likelihood estimate.

Animating MCMC - 1D example (code here)

https://gist.github.com/oliviergimenez/5ee33af9c8d947b72a39ed1764040bf3

Animating MCMC - 2D example (code here)

https://mbjoseph.github.io/posts/2018-12-25-animating-the-metropolis-algorithm/

The MCMC Interactive Gallery (more here)

https://chi-feng.github.io/mcmc-demo/

Assessing convergence
MCMC algorithms can be used to construct a Markov chain with a given stationary
distribution (set to be the posterior distribution).

For the MCMC algorithm, the posterior distribution is only needed to be known up to
proportionality.

Once the stationary distribution is reached, we can regard the realisations of the
chain as a (dependent) sample from the posterior distribution (and obtain Monte
Carlo estimates).

We consider some important implementation issues.

Mixing and autocorrelation

How do good chains behave?
Converge to same target distribution; discard some realisations of Markov chain
before convergence is achieved.

Once there, explore ef�ciently: The post-convergence sample size required for
suitable numerical summaries.

Therefore, we are looking to determine how long it takes for the Markov chain to
converge to the stationary distribution.

In practice, we must discard observations from the start of the chain and just use
observations from the chain once it has converged.

The initial observations that we discard are referred to as the burn-in.

Simplest method to determine length of burn-in period is to look at trace plots.

Burn-in

If simulations cheap, be conservative.

Effective sample size n.eff
How long of a chain is needed to produce stable estimates ?

Most MCMC chains are strongly autocorrelated.

Successive steps are near each other, and are not independent.

The effective sample size (n.eff) measures chain length while taking into account
the autocorrelation of the chain.

n.eff is less than the number of MCMC iterations.
Check the n.eff of every parameter of interest.
Check the n.eff of any interesting parameter combinations.

We need independent steps.n.eff ≥ 100

Potential scale reduction factor
Gelman-Rubin statistic

Measures the ratio of the total variability combining multiple chains (between-chain
plus within-chain) to the within-chain variability.

Asks the question is there a chain effect? Very much alike the test in an ANOVA.

Values near indicates likely convergence, a value of is considered acceptable.

Necessary condition, not suf�cient; In other words, these diagnostics cannot tell you
that you have converged for sure, only that you have not.

R̂

F

1 ≤ 1.1

To sum up
Run multiple chains from arbitrary starting places (initial values).

Assume convergence when all chains reach same regime

Discard initial burn-in phase.

Proceed with posterior inference.

Use traceplot, effective sample size and .R̂

What if you have issues of convergence?
Increase burn-in, sample more.

Use more informative priors.

Pick better initial values (good guess), using e.g. estimates from simpler models.

Reparameterize:
Standardize covariates.
Non-centering: becomes with .

Something wrong with your model?
Start with a simpler model (remove complexities).
Use simulations.

Change your sampler. More later on.

α ∼ N(0,σ) α = zσ z ∼ N(0, 1)

Further reading
McCarthy, M. (2007). Bayesian Methods for Ecology. Cambridge: Cambridge
University Press.

McElreath, R. (2020). Statistical Rethinking: A Bayesian Course with Examples in R
and Stan (2nd ed.). CRC Press.

Gelman, A. and Hill, J. (2006). Data Analysis Using Regression and
Multilevel/Hierarchical Models (Analytical Methods for Social Research). Cambridge:
Cambridge University Press.

https://www.cambridge.org/core/books/bayesian-methods-for-ecology/9225F65B8A25D69B0B6C50B5A9A78201
https://xcelab.net/rm/statistical-rethinking/
https://www.cambridge.org/core/books/data-analysis-using-regression-and-multilevelhierarchical-models/32A29531C7FD730C3A68951A17C9D983

Live demo

‘Free the modeler in you’: Intro to Nimble
The team (citation by Marc Kéry)

last updated: 2021-05-17

What is Nimble?

(Meme created by Todd Arnold's wonderful students)

What is Nimble?
Numerical Inference for statistical Models using Bayesian and Likelihood Estimation.

A framework for hierarchical statistical models and algorithms.

Uses almost the same model code as WinBUGS, OpenBUGS, and JAGS.

An extension of the BUGS language: additional syntax, custom functions and
distributions.

A con�gurable system for MCMC.

A library of other methods (SMC, MCEM).

A model-generic programming system to write new analysis methods.

Load nimble package

library(nimble)

Build model, made of likelihood and priors

naive.survival.model <- nimbleCode({
 # prior
 phi ~ dunif(0, 1)
 # likelihood
 y ~ dbinom(phi, n)
})

Syntax: what's new/better/different?

Vectorization

JAGS (& Nimble)
for(t in 1:Tmax){
 x[t] <- Mu.x + epsilon[t]
}

Nimble
x[1:Tmax] <- Mu.x + epsilon[1:Tmax]

Syntax: what's new/better/different?

More �exible speci�cation of distributions

JAGS (& Nimble)
for(t in 1:Tmax){
 epsilon[t] ~ dnorm(0, tau)
}
tau <- pow(sigma, -2)
sigma ~ dunif(0, 5)

Nimble
for(t in 1:Tmax){
 epsilon[t] ~ dnorm(0, sd = sigma)
}
sigma ~ dunif(0, 5)

Syntax: what's new/better/different?

Your own functions and distributions

x[1:Tmax] <- myNimbleFunction(a = Mu.x, b = epsilon[1:Tmax])

sigma ~ dCustomDistr(c = 0.5, z = 10)

Syntax: what's new/better/different?

The end of empty indices

JAGS
sum.x <- sum(x[])

Nimble
sum.x <- sum(x[1:Tmax])

& more...

Read in data

Back to our naive survival model:

naive.survival.model <- nimbleCode({
 # prior
 phi ~ dunif(0, 1)
 # likelihood
 y ~ dbinom(phi, n)
})

my.data <- list(n = 57, y = 19)

Distinguish constants and data

To Nimble, not all "data" is data...

my.constants <- list(n = 57)
my.data <- list(y = 19)

Constants:

Can never be changed
Must be provided when a model is de�ned (part of the model structure)
E.g. vector of known index values, variables used to de�ne for-loops, etc.

Distinguish constants and data

To Nimble, not all "data" is data...

my.constants <- list(n = 57)
my.data <- list(y = 19)

Data:

Can be changed without re-building the model
Can be (re-)simulated within a model
E.g. stuff that only appears to the left of a "~"

For computational ef�ciency, better to specify as much as possible as constants.

Nimble will help you with this!

Specify initial values

initial.values <- function() list(phi = runif(1,0,1))

initial.values()

$phi
[1] 0.9287372

Which parameters to save?

parameters.to.save <- c("phi")

MCMC details

n.iter <- 5000
n.burnin <- 1000
n.chains <- 2
n.thin <- 1

Number of posterior samples per chain:

n. posterior =

n. iter − n. burnin

n. thin

Run model, tadaa!

mcmc.output <- nimbleMCMC(code = naive.survival.model,
 data = my.data,
 constants = my.constants,
 inits = initial.values,
 monitors = parameters.to.save,
 thin = n.thin,
 niter = n.iter,
 nburnin = n.burnin,
 nchains = n.chains)

Explore MCMC outputs

str(mcmc.output)

List of 2
 $ chain1: num [1:4000, 1] 0.406 0.43 0.264 0.264 0.297 ...
 ..- attr(*, "dimnames")=List of 2
 $: NULL
 $: chr "phi"
 $ chain2: num [1:4000, 1] 0.274 0.274 0.389 0.389 0.389 ...
 ..- attr(*, "dimnames")=List of 2
 $: NULL
 $: chr "phi"

Explore MCMC outputs

head(mcmc.output$chain1)

 phi
[1,] 0.4057891
[2,] 0.4297459
[3,] 0.2644534
[4,] 0.2644534
[5,] 0.2971877
[6,] 0.2971877

Explore MCMC outputs

Numerical summaries

library(MCMCvis)
MCMCsummary(mcmc.output, round = 2)

 mean sd 2.5% 50% 97.5% Rhat n.eff
phi 0.34 0.06 0.23 0.34 0.47 1 1793

MCMCtrace(mcmc.output,
 pdf = FALSE)

Trace and posterior density

MCMCtrace(mcmc.output,
 pdf = FALSE,
 ind = TRUE,
 Rhat = TRUE,
 n.eff = TRUE)

Trace and posterior density

Our nimble work�ow so far

But nimble gives full access to the MCMC engine

Useful resources

Of�cial website https://r-nimble.org

User Manual https://r-nimble.org/html_manual/cha-welcome-nimble.html and
cheatsheet.

Users mailing list https://groups.google.com/forum/#!forum/nimble-users

Training material https://github.com/nimble-training

Reference to cite when using nimble in a publication:

de Valpine, P., D. Turek, C. J. Paciorek, C. Anderson-Bergman, D. Temple Lang,
and R. Bodik (2017). Programming With Models: Writing Statistical Algorithms
for General Model Structures With NIMBLE. Journal of Computational and
Graphical Statistics 26 (2): 403–13.

https://r-nimble.org/
https://r-nimble.org/html_manual/cha-welcome-nimble.html
https://r-nimble.org/cheatsheets/NimbleCheatSheet.pdf
https://groups.google.com/forum/#!forum/nimble-users
https://github.com/nimble-training
https://arxiv.org/pdf/1505.05093.pdf

Live demo

What you see is not what you get: Hidden
Markov models and capture-recapture data

The team

last updated: 2021-05-18

Back to our survival example
We have survivors out of released animals with winter survival probability

Our model so far:

This is also:

What if we had several winters? Say winters.

z n ϕ

z ∼ Binomial(n, ϕ) [likelihood]

ϕ ∼ Beta(1, 1) [prior for ϕ]

zi ∼ Bernoulli(ϕ), i = 1, … , N [likelihood]

ϕ ∼ Beta(1, 1) [prior for ϕ]

T = 5

Longitudinal data
 if individual alive at winter , and if dead.

1 1 2 2 2 2

2 1 1 1 2 2

3 1 1 2 2 2

4 1 1 2 2 2

5 1 2 2 2 2

6 1 2 2 2 2

7 1 1 1 1 1

8 1 1 1 1 2

zi,t = 1 i t zi,t = 2

id winter 1 winter 2 winter 3 winter 4 winter 5

A model for longitudinal survival data
A model relies on assumptions.

The state of an animal at a given winter, alive or dead, is only dependent on its state
the winter before.

The future depends only on the present, not the past: Markov process.

If an animal is alive in a given winter, the probability it survives to the next winter is .

The probability it dies is .

If an animal is dead a winter, it remains dead, unless you believe in zombies.

ϕ

1 − ϕ

Markov process

ztzt − 1zt − 2· · · zt +1 zt +2 · · ·

Markov process

1111 2 2 ·· ·
ϕ ϕ ϕ 1 − ϕ 1 1

Transition matrix
The core of the Markov process is made of the transition probabilities.

For example, the probability of transitioning from state alive at to state alive at
 is . It is the survival probability .

The probability of dying over the interval is
.

Now if an animal is dead at , then and
.

These probabilities can be packed in a transition matrix :

t − 1
t Pr(zt = 1|zt−1 = 1) = γ1,1 ϕ

(t − 1, t)
Pr(zt = 2|zt−1 = 1) = γ1,2 = 1 − ϕ

t − 1 Pr(zt = 1|zt−1 = 2) = 0
Pr(zt = 2|zt−1 = 2) = 1

Γ

Γ = (
γ1,1 γ1,2

γ2,1 γ2,2
) = (

ϕ 1 − ϕ

0 1
)

Transition matrix:

Γ = (

zt = A zt = D

ϕ 1 − ϕ

0 1
)

zt−1 = A

zt−1 = D

Initial states
A Markov process has to start somewhere.

We need the probabilities of initial states, i.e. states at .

We will use .

Here we assume that all animals are alive at �rst winter, i.e. and
.

t = 1

δ = (Pr(z1 = 1), Pr(z1 = 2))

Pr(z1 = 1) = 1
Pr(z1 = 2) = 0

Likelihood
Pr(z) = Pr(zT , zT−1, zT−2, … , z1) Pr(zT−1, zT−2, … , z1) Pr(zT−2, … , z1)

Likelihood
Pr(z) = Pr(zT , zT−1, zT−2, … , z1) Pr(zT−1, zT−2, … , z1) Pr(zT−2, … , z1)

= Pr(zT |zT−1, zT−2, … , z1) Pr(zT−1, zT−2, … , z1)

Likelihood
Pr(z) = Pr(zT , zT−1, zT−2, … , z1) Pr(zT−1, zT−2, … , z1) Pr(zT−2, … , z1)

= Pr(zT |zT−1, zT−2, … , z1) Pr(zT−1, zT−2, … , z1)

= Pr(zT |zT−1) Pr(zT−1, zT−2, … , z1)

Likelihood
Pr(z) = Pr(zT , zT−1, zT−2, … , z1) Pr(zT−1, zT−2, … , z1) Pr(zT−2, … , z1)

= Pr(zT |zT−1, zT−2, … , z1) Pr(zT−1, zT−2, … , z1)

= Pr(zT |zT−1) Pr(zT−1, zT−2, … , z1)

= Pr(zT |zT−1) Pr(zT−1|zT−2, … , z1) Pr(zT−2, … , z1)

Likelihood
Pr(z) = Pr(zT , zT−1, zT−2, … , z1) Pr(zT−1, zT−2, … , z1) Pr(zT−2, … , z1)

= Pr(zT |zT−1, zT−2, … , z1) Pr(zT−1, zT−2, … , z1)

= Pr(zT |zT−1) Pr(zT−1, zT−2, … , z1)

= Pr(zT |zT−1) Pr(zT−1|zT−2, … , z1) Pr(zT−2, … , z1)

= Pr(zT |zT−1) Pr(zT−1|zT−2) Pr(zT−2, … , z1)

Likelihood
Pr(z) = Pr(zT , zT−1, zT−2, … , z1) Pr(zT−1, zT−2, … , z1) Pr(zT−2, … , z1)

= Pr(zT |zT−1, zT−2, … , z1) Pr(zT−1, zT−2, … , z1)

= Pr(zT |zT−1) Pr(zT−1, zT−2, … , z1)

= Pr(zT |zT−1) Pr(zT−1|zT−2, … , z1) Pr(zT−2, … , z1)

= Pr(zT |zT−1) Pr(zT−1|zT−2) Pr(zT−2, … , z1)

= …

Likelihood
Pr(z) = Pr(zT , zT−1, zT−2, … , z1) Pr(zT−1, zT−2, … , z1) Pr(zT−2, … , z1)

= Pr(zT |zT−1, zT−2, … , z1) Pr(zT−1, zT−2, … , z1)

= Pr(zT |zT−1) Pr(zT−1, zT−2, … , z1)

= Pr(zT |zT−1) Pr(zT−1|zT−2, … , z1) Pr(zT−2, … , z1)

= Pr(zT |zT−1) Pr(zT−1|zT−2) Pr(zT−2, … , z1)

= …

= Pr(zT |zT−1) Pr(zT−1|zT−2) … Pr(z2|z1) Pr(z1)

Likelihood
Pr(z) = Pr(zT , zT−1, zT−2, … , z1) Pr(zT−1, zT−2, … , z1) Pr(zT−2, … , z1)

= Pr(zT |zT−1, zT−2, … , z1) Pr(zT−1, zT−2, … , z1)

= Pr(zT |zT−1) Pr(zT−1, zT−2, … , z1)

= Pr(zT |zT−1) Pr(zT−1|zT−2, … , z1) Pr(zT−2, … , z1)

= Pr(zT |zT−1) Pr(zT−1|zT−2) Pr(zT−2, … , z1)

= …

= Pr(zT |zT−1) Pr(zT−1|zT−2) … Pr(z2|z1) Pr(z1)

= Pr(z1)
T

∏
t=2

Pr(zt|zt−1)

Likelihood
Pr(z) = Pr(zT , zT−1, zT−2, … , z1) Pr(zT−1, zT−2, … , z1) Pr(zT−2, … , z1)

= Pr(zT |zT−1, zT−2, … , z1) Pr(zT−1, zT−2, … , z1)

= Pr(zT |zT−1) Pr(zT−1, zT−2, … , z1)

= Pr(zT |zT−1) Pr(zT−1|zT−2, … , z1) Pr(zT−2, … , z1)

= Pr(zT |zT−1) Pr(zT−1|zT−2) Pr(zT−2, … , z1)

= …

= Pr(zT |zT−1) Pr(zT−1|zT−2) … Pr(z2|z1) Pr(z1)

= Pr(z1)
T

∏
t=2

Pr(zt|zt−1)

= Pr(z1)
T

∏
t=2

γzt−1,zt

Example
Let's assume an animal is alive, alive then dies.

We have . What is the contribution of this animal to the likelihood?

Remember:

z = (1, 1, 2)

Pr(z = (1, 1, 2)) = Pr(z1 = 1) γz1=1,z2=1 γz2=1,z3=2

= 1 ϕ (1 − ϕ).

Γ = (
γ1,1 γ1,2

γ2,1 γ2,2
) = (

ϕ 1 − ϕ

0 1
)

Our model
z1 ∼ Multinomial(1, δ) [likelihood, t = 1]

zt|zt−1 ∼ Multinomial(1, γzt−1,zt
) [likelihood, t > 1]

ϕ ∼ Beta(1, 1) [prior for ϕ]

Our model
z1 ∼ Multinomial(1, δ) [likelihood, t = 1]

zt|zt−1 ∼ Multinomial(1, γzt−1,zt
) [likelihood, t > 1]

ϕ ∼ Beta(1, 1) [prior for ϕ]

Our model
z1 ∼ Multinomial(1, δ) [likelihood, t = 1]

zt|zt−1 ∼ Multinomial(1, γzt−1,zt
) [likelihood, t > 1]

ϕ ∼ Beta(1, 1) [prior for ϕ]

Our model
z1 ∼ Multinomial(1, δ) [likelihood, t = 1]

zt|zt−1 ∼ Multinomial(1, γzt−1,zt
) [likelihood, t > 1]

ϕ ∼ Beta(1, 1) [prior for ϕ]

Γ = (
ϕ 1 − ϕ

0 1
)

γzt−1=1,zt
= (ϕ, 1 − ϕ)

Our model
z1 ∼ Multinomial(1, δ) [likelihood, t = 1]

zt|zt−1 ∼ Multinomial(1, γzt−1,zt
) [likelihood, t > 1]

ϕ ∼ Beta(1, 1) [prior for ϕ]

Γ = (
ϕ 1 − ϕ

0 1
)

γzt−1=2,zt
= (0, 1)

Nimble implementation
In Nimble, we will use the categorical distribution dcat().

The categorical distribution is a multinomial distribution with a single draw.

nimble::rcat(n = 20, prob = c(0.1, 0.3, 0.6))

[1] 1 3 2 3 3 3 2 2 3 1 3 3 2 3 3 3 2 2 3 3

nimble::rcat(n = 20, prob = c(0.1, 0.1, 0.4, 0.2, 0.2))

[1] 3 5 2 3 5 2 2 3 1 2 5 3 3 1 4 1 1 3 3 3

Nimble code

markov.survival <- nimbleCode({
 phi ~ dunif(0, 1) # prior
 gamma[1,1] <- phi # Pr(alive t -> alive t+1)
 gamma[1,2] <- 1 - phi # Pr(alive t -> dead t+1)
 gamma[2,1] <- 0 # Pr(dead t -> alive t+1)
 gamma[2,2] <- 1 # Pr(dead t -> dead t+1)
 delta[1] <- 1 # Pr(alive t = 1) = 1
 delta[2] <- 0 # Pr(dead t = 1) = 0
 # likelihood
 for (i in 1:N){
 z[i,1] ~ dcat(delta[1:2])
 for (j in 2:T){
 z[i,j] ~ dcat(gamma[z[i,j-1], 1:2])
 }
 }})

Nimble code

markov.survival <- nimbleCode({
 phi ~ dunif(0, 1) # prior
 gamma[1,1] <- phi # Pr(alive t -> alive t+1)
 gamma[1,2] <- 1 - phi # Pr(alive t -> dead t+1)
 gamma[2,1] <- 0 # Pr(dead t -> alive t+1)
 gamma[2,2] <- 1 # Pr(dead t -> dead t+1)
 delta[1] <- 1 # Pr(alive t = 1) = 1
 delta[2] <- 0 # Pr(dead t = 1) = 0
 # likelihood
 for (i in 1:N){
 z[i,1] ~ dcat(delta[1:2])
 for (j in 2:T){
 z[i,j] ~ dcat(gamma[z[i,j-1], 1:2])
 }
 }})

Nimble code

markov.survival <- nimbleCode({
 phi ~ dunif(0, 1) # prior
 gamma[1,1] <- phi # Pr(alive t -> alive t+1)
 gamma[1,2] <- 1 - phi # Pr(alive t -> dead t+1)
 gamma[2,1] <- 0 # Pr(dead t -> alive t+1)
 gamma[2,2] <- 1 # Pr(dead t -> dead t+1)
 delta[1] <- 1 # Pr(alive t = 1) = 1
 delta[2] <- 0 # Pr(dead t = 1) = 0
 # likelihood
 for (i in 1:N){
 z[i,1] ~ dcat(delta[1:2])
 for (j in 2:T){
 z[i,j] ~ dcat(gamma[z[i,j-1], 1:2])
 }
 }})

Nimble code

markov.survival <- nimbleCode({
 phi ~ dunif(0, 1) # prior
 gamma[1,1] <- phi # Pr(alive t -> alive t+1)
 gamma[1,2] <- 1 - phi # Pr(alive t -> dead t+1)
 gamma[2,1] <- 0 # Pr(dead t -> alive t+1)
 gamma[2,2] <- 1 # Pr(dead t -> dead t+1)
 delta[1] <- 1 # Pr(alive t = 1) = 1
 delta[2] <- 0 # Pr(dead t = 1) = 0
 # likelihood
 for (i in 1:N){
 z[i,1] ~ dcat(delta[1:2])
 for (j in 2:T){
 z[i,j] ~ dcat(gamma[z[i,j-1], 1:2])
 }
 }})

Nimble code

markov.survival <- nimbleCode({
 phi ~ dunif(0, 1) # prior
 gamma[1,1] <- phi # Pr(alive t -> alive t+1)
 gamma[1,2] <- 1 - phi # Pr(alive t -> dead t+1)
 gamma[2,1] <- 0 # Pr(dead t -> alive t+1)
 gamma[2,2] <- 1 # Pr(dead t -> dead t+1)
 delta[1] <- 1 # Pr(alive t = 1) = 1
 delta[2] <- 0 # Pr(dead t = 1) = 0
 # likelihood
 for (i in 1:N){
 z[i,1] ~ dcat(delta[1:2])
 for (j in 2:T){
 z[i,j] ~ dcat(gamma[z[i,j-1], 1:2])
 }
 }
 })

Nimble code

markov.survival <- nimbleCode({
 phi ~ dunif(0, 1) # prior
 gamma[1,1] <- phi # Pr(alive t -> alive t+1)
 gamma[1,2] <- 1 - phi # Pr(alive t -> dead t+1)
 gamma[2,1] <- 0 # Pr(dead t -> alive t+1)
 gamma[2,2] <- 1 # Pr(dead t -> dead t+1)
 delta[1] <- 1 # Pr(alive t = 1) = 1
 delta[2] <- 0 # Pr(dead t = 1) = 0
 # likelihood
 for (i in 1:N){
 z[i,1] ~ dcat(delta[1:2])
 for (j in 2:T){
 z[i,j] ~ dcat(gamma[z[i,j-1], 1:2])
 }
 }})

Nimble code

markov.survival <- nimbleCode({
 phi ~ dunif(0, 1) # prior
 gamma[1,1] <- phi # Pr(alive t -> alive t+1)
 gamma[1,2] <- 1 - phi # Pr(alive t -> dead t+1)
 gamma[2,1] <- 0 # Pr(dead t -> alive t+1)
 gamma[2,2] <- 1 # Pr(dead t -> dead t+1)
 delta[1] <- 1 # Pr(alive t = 1) = 1
 delta[2] <- 0 # Pr(dead t = 1) = 0
 # likelihood
 for (i in 1:N){
 z[i,1] ~ dcat(delta[1:2])
 for (j in 2:T){
 z[i,j] ~ dcat(gamma[z[i,j-1], 1:2])
 }
 }})

Nimble code

markov.survival <- nimbleCode({
 phi ~ dunif(0, 1) # prior
 gamma[1,1] <- phi # Pr(alive t -> alive t+1)
 gamma[1,2] <- 1 - phi # Pr(alive t -> dead t+1)
 gamma[2,1] <- 0 # Pr(dead t -> alive t+1)
 gamma[2,2] <- 1 # Pr(dead t -> dead t+1)
 delta[1] <- 1 # Pr(alive t = 1) = 1
 delta[2] <- 0 # Pr(dead t = 1) = 0
 # likelihood
 for (i in 1:N){
 z[i,1] ~ dcat(delta[1:2])
 for (j in 2:T){
 z[i,j] ~ dcat(gamma[z[i,j-1], 1:2])
 }
 }})

Note

Vector is used as a placeholder for more complex models to come in Class 7.

Here, you could write z[i,1] <- 1.

δ

Nimble awesomness

You should be able to de�ne vectors and matrices like you do in R.

markov.survival <- nimbleCode({
 phi ~ dunif(0, 1) # prior
 gamma[1:2,1:2] <- matrix(c(phi, 0, 1 - phi, 1), nrow = 2)
 delta[1:2] <- c(1, 0)
 # likelihood
 for (i in 1:N){
 z[i,1] ~ dcat(delta[1:2])
 for (j in 2:T){
 z[i,j] ~ dcat(gamma[z[i,j-1], 1:2])
 }
 }})

Converting to Nimble from Jags, OpenBUGS or WinBUGS

Main difference is that Nimble does not guess.

We need to specify dimensions of vectors and matrices.

You cannot write x[] or x[i,]. Just provide index ranges x[1:n] or x[i,1:m].

More tips here.

https://r-nimble.org/quick-guide-for-converting-from-jags-or-bugs-to-nimble

Constants and data

my.constants <- list(N = 57, T = 5)
my.constants

$N
[1] 57

$T
[1] 5

my.data <- list(z = z)

Initial values

initial.values <- function() list(phi = runif(1,0,1))
initial.values()

$phi
[1] 0.4695068

Parameters to monitor

parameters.to.save <- c("phi")
parameters.to.save

[1] "phi"

MCMC details

n.iter <- 5000
n.burnin <- 1000
n.chains <- 2

Run Nimble

mcmc.output <- nimbleMCMC(code = markov.survival,
 constants = my.constants,
 data = my.data,
 inits = initial.values,
 monitors = parameters.to.save,
 niter = n.iter,
 nburnin = n.burnin,
 nchains = n.chains)

Posterior distribution of survival

library(MCMCvis)
MCMCsummary(mcmc.output, round = 2)

mean sd 2.5% 50% 97.5% Rhat n.eff
phi 0.76 0.03 0.7 0.77 0.83 1 1848

Posterior mean and median are close to .

Cool! The data was simulated, with (true) survival .

0.8

ϕ = 0.8

Live demo

Unfortunately, this is the data we wish we had.

In real life
Animals cannot be monitored exhaustively, like humans in a medical trial.

Animals are captured, marked or identi�ed then released alive.

Then, these animals may be detected again, or go undetected — capture-recapture

Whenever animals go undetected, it might be that they were alive but missed, or
because they were dead and therefore could not be detected — imperfect detection.

Johnny Ball estimates the number of black cabs in London - Bang Goes the Theory - BBC OneJohnny Ball estimates the number of black cabs in London - Bang Goes the Theory - BBC One

https://www.youtube.com/watch?v=tyX79mPm2xY

In real life
Animals cannot be monitored exhaustively, like humans in a medical trial.

Animals are captured, marked or identi�ed then released alive.

Then, these animals may be detected again, or go undetected — capture-recapture

Whenever animals go undetected, it might be that they were alive but missed, or
because they were dead and therefore could not be detected — imperfect detection.

The Markov process for survival is only partially observed — hidden Markov models.

The truth is in

Unfortunately, we have only partial access to .

We do observe the detections and non-detections.

How are and connected?

1 1 2 2 2 2

2 1 1 1 2 2

3 1 1 2 2 2

4 1 1 2 2 2

5 1 2 2 2 2

6 1 2 2 2 2

z

id winter 1 winter 2 winter 3 winter 4 winter 5

z

y

z y

Dead animals go undetected

When an animal is dead i.e. , it cannot be detected, therefore .

1 1 0 0 0 0

2 1 1 1 0 0

3 1 1 0 0 0

4 1 1 0 0 0

5 1 0 0 0 0

6 1 0 0 0 0

z = 2 y = 0

id winter 1 winter 2 winter 3 winter 4 winter 5

Alive animals may be detected or not

If animal is alive , it is detected w/ prob or not w/ prob .

Before �rst detection, we know nothing, and we proceed conditional on it.

This table is what we observe in real life.

1 NA 1 0 0 0

2 1 0 0 0 0

3 1 0 0 0 0

4 1 1 1 0 1

5 1 1 0 0 0

6 1 1 1 1 0

z = 1 y = 1 p y = 0 1 − p

id winter 1 winter 2 winter 3 winter 4 winter 5

y

Observation matrix
The observation probabilities can be packed in an observation matrix .

In rows: the states alive and dead .

In columns: the observations non-detected and detected (previously
coded 0 and 1 respectively).

Observation matrix:

Ω

z = 1 z = 2

y = 1 y = 2

Ω = (
ω1,1 ω1,2

ω2,1 ω2,2
) = (

1 − p p

1 0
)

Ω = (

yt = 1 yt = 2

1 − p p

1 0
)

zt = A

zt = D

Markov model

ztzt − 1zt − 2· · · zt +1 zt +2 · · ·

States are in gray.z

Hidden Markov model

ztzt − 1zt − 2· · · zt +1 zt +2 · · ·

ytyt − 1yt − 2 yt +1 yt +2

States are in gray.

Observations are in white.

z

y

Hidden Markov model for survival

1111 2 2 ·· ·

121 1 1

ϕ ϕ ϕ 1 − ϕ 1 1

1 − p p 1 − p 1 1

For states (in gray), is alive, is dead.

For observations (in white), is non-detected, is detected

z = 1 z = 2

y = 1 y = 2

HMM likelihood
Using the formula of total probability, then the likelihood of a Markov chain:

It has a matrix formulation:

Pr(y) = Pr(y1, y2, … , yT)

=∑
z1

⋯∑
zT

Pr(y1, y2, … , yT |z1, z2, … , zT) Pr(z1, z2, … , zT)

=∑
z1

⋯∑
zT

(
T

∏
t=1

ωzt,yt
)(Pr(z1)

T

∏
t=2

γzt−1,zt
)

Pr(y) = δ Ω Γ ⋯ Ω Γ Ω 1

Example
Let assume an animal is detected, then missed.

We have . What is the contribution of this animal to the likelihood?y = (2, 1)

Pr(y = (2, 1)) =
2

∑
z1=1

2

∑
z2=1

wz1,y1=2wz2,y2=1 Pr(z1)γz1,z2
Pr(zT−1, zT−2, … , z1, z1, z1, z1)

Example
Let assume an animal is detected, then missed.

We have . What is the contribution of this animal to the likelihood?y = (2, 1)

Pr(y = (2, 1)) =
2

∑
z1=1

2

∑
z2=1

wz1,y1=2wz2,y2=1 Pr(z1)γz1,z2
Pr(zT−1, zT−2, … , z1, z1, z1, z1)

=
2

∑
z1=1

(wz1,y1=2wz2=1,y2=1 Pr(z1)γz1,z2=1 + wz1,y1=2wz2=2,y2=1 Pr(z1)γz1,z2=2)

Example
Let assume an animal is detected, then missed.

We have . What is the contribution of this animal to the likelihood?

Note: and .

y = (2, 1)

Pr(y = (2, 1)) =
2

∑
z1=1

2

∑
z2=1

wz1,y1=2wz2,y2=1 Pr(z1)γz1,z2
Pr(zT−1, zT−2, … , z1, z1, z1, z1)

=
2

∑
z1=1

(wz1,y1=2wz2=1,y2=1 Pr(z1)γz1,z2=1 + wz1,y1=2wz2=2,y2=1 Pr(z1)γz1,z2=2)

= wz1=1,y1=2wz2=1,y2=1δ1γz1=1,z2=1 + wz1=1,y1=2wz2=2,y2=1δ1γz1=1,z2=2

Pr(z1 = 1) = δ1 = 1 Pr(z1 = 2) = 0

Example
Let assume an animal is detected, then missed.

We have . What is the contribution of this animal to the likelihood?

Note: because we condition on �rst capture.

y = (2, 1)

Pr(y = (2, 1)) =
2

∑
z1=1

2

∑
z2=1

wz1,y1=2wz2,y2=1 Pr(z1)γz1,z2
Pr(zT−1, zT−2, … , z1, z1, z1, z1)

=
2

∑
z1=1

(wz1,y1=2wz2=1,y2=1 Pr(z1)γz1,z2=1 + wz1,y1=2wz2=2,y2=1 Pr(z1)γz1,z2=2)

= wz1=1,y1=2wz2=1,y2=1δ1γz1=1,z2=1 + wz1=1,y1=2wz2=2,y2=1δ1γz1=1,z2=2

= (1 − p)ϕ + (1 − ϕ)

wz1=1,y1=2 = Pr(y1 = 2|z1 = 1) = 1

Estimating the latent states or not?

In previous example, we got rid of the states, so that likelihood was a function of
and only. This is the function we would maximize in a Frequentist approach.

The Bayesian approach with MCMC methods allows treating the latent states as if
they were parameters, and to be estimated as such.

Infering the latent states can be useful to estimate prevalence, e.g. in animal
epidemiology with prevalence of a disease, in evolutionary ecology with sex ratio or in
conservation biology with prevalence of hybrids.

Estimating the latent states is costly though, and if not required, marginalisation may
speed up computations. Actually, you can estimate the states afterwards (Viterbi).

More about so-called marginalisation in Yackulic et al. (2020).

The neat thing with Nimble is that it provides marginalised models through
nimbleEcology, we'll get back to it in Class 8.

z

ϕ
p

z

https://veterinaryresearch.biomedcentral.com/articles/10.1186/1297-9716-45-39
https://onlinelibrary.wiley.com/doi/abs/10.1002/cjs.5550360105
https://onlinelibrary.wiley.com/doi/full/10.1002/ece3.4819?af=R
https://esajournals.onlinelibrary.wiley.com/doi/abs/10.1002/eap.2112

Our model
zfirst ∼ Multinomial(1, δ) [likelihood]

zt|zt−1 ∼ Multinomial(1, γzt−1,zt
) [likelihood]

yt|zt ∼ Multinomial(1, ωzt
) [likelihood]

ϕ ∼ Beta(1, 1) [prior for ϕ]

p ∼ Beta(1, 1) [prior for p]

Nimble implementation

Priors

hmm.survival <- nimbleCode({
 phi ~ dunif(0, 1) # prior survival
 p ~ dunif(0, 1) # prior detection
...

HMM ingredients

...
 # parameters
 gamma[1,1] <- phi # Pr(alive t -> alive t+1)
 gamma[1,2] <- 1 - phi # Pr(alive t -> dead t+1)
 gamma[2,1] <- 0 # Pr(dead t -> alive t+1)
 gamma[2,2] <- 1 # Pr(dead t -> dead t+1)
 delta[1] <- 1 # Pr(alive t = 1) = 1
 delta[2] <- 0 # Pr(dead t = 1) = 0
 omega[1,1] <- 1 - p # Pr(alive t -> non-detected t)
 omega[1,2] <- p # Pr(alive t -> detected t)
 omega[2,1] <- 1 # Pr(dead t -> non-detected t)
 omega[2,2] <- 0 # Pr(dead t -> detected t)
...

Likelihood

...
 # likelihood
 for (i in 1:N){
 z[i,first[i]] ~ dcat(delta[1:2])
 for (j in (first[i]+1):T){
 z[i,j] ~ dcat(gamma[z[i,j-1], 1:2])
 y[i,j] ~ dcat(omega[z[i,j], 1:2])
 }
 }
})

Constants

first <- apply(y, 1, function(x) min(which(x !=0)))
my.constants <- list(N = nrow(y), T = 5, first = first)
my.constants

$N
[1] 44

$T
[1] 5

$first
[1] 2 1 1 1 1 1 4 1 1 2 1 1 1 2 1 1 1 1 1 3 1 1 1 2 1 3 1 2 3 3 1 4
[39] 3 1 2 1 1 1

Data

The data are made of 0s for non-detections and 1s for detections.

To use the categorical distribution, we need to code 1, 2, etc. Value 0 is not accepted.

Add 1 to get the correct format for non-detection and for detection.

my.data <- list(y = y + 1)

y = 1 y = 2

Initial values

zinits <- y + 1 # non-detection -> alive
zinits[zinits == 2] <- 1 # dead -> alive
initial.values <- function() list(phi = runif(1,0,1),
 p = runif(1,0,1),
 z = zinits)

Parameters to monitor

parameters.to.save <- c("phi", "p")
parameters.to.save

[1] "phi" "p"

MCMC details

n.iter <- 5000
n.burnin <- 1000
n.chains <- 2

Run Nimble

mcmc.output <- nimbleMCMC(code = hmm.survival,
 constants = my.constants,
 data = my.data,
 inits = initial.values,
 monitors = parameters.to.save,
 niter = n.iter,
 nburnin = n.burnin,
 nchains = n.chains)

Posterior distribution of survival

library(MCMCvis)
MCMCsummary(mcmc.output, round = 2)

mean sd 2.5% 50% 97.5% Rhat n.eff
p 0.57 0.06 0.45 0.57 0.69 1.00 503
phi 0.86 0.04 0.78 0.86 0.93 1.01 499

The data is simulated, with true survival and detection .ϕ = 0.8 p = 0.6

Further reading

Zucchini, MacDonald and Langrock (2016) Hidden Markov Models for Time Series:
An Introduction Using R (2nd ed). Chapman and Hall/CRC.

McClintock, B.T., Langrock, R., Gimenez, O., Cam, E., Borchers, D.L., Glennie, R. and
Patterson, T.A. (2020), Uncovering ecological state dynamics with hidden Markov
models. Ecology Letters, 23: 1878-1903.

Yackulic, C. B. Dodrill, M., Dzul, M., Sanderlin, J. S., and Reid, J. A.. (2020). A need for
speed in Bayesian population models: a practical guide to marginalizing and
recovering discrete latent states. Ecological Applications 30:e02112.

L. R. Rabiner (1989). A tutorial on hidden Markov models and selected applications in
speech recognition. Proceedings of the IEEE, 77:257-286.

https://www.routledge.com/Hidden-Markov-Models-for-Time-Series-An-Introduction-Using-R-Second-Edition/Zucchini-MacDonald-Langrock/p/book/9781482253832
https://onlinelibrary.wiley.com/doi/full/10.1111/ele.13610
https://esajournals.onlinelibrary.wiley.com/doi/abs/10.1002/eap.2112
https://web.ece.ucsb.edu/Faculty/Rabiner/ece259/Reprints/tutorial%20on%20hmm%20and%20applications.pdf

Live demo

Dead or alive: Survival estimation
The team

last updated: 2021-05-18

History of the Cormack-Jolly-Seber (CJS) model

S.T. Buckland (2016). A Conversation with Richard M. Cormack. Statistical Science 31: 142-150.

What we've seen so far

1111 2 2 ·· ·

121 1 1

ϕ ϕ ϕ 1 − ϕ 1 1

1 − p p 1 − p 1 1

For states (in gray), is alive, is dead.

For observations (in white), is non-detected, is detected

z = 1 z = 2

y = 1 y = 2

In the CJS model, survival and recapture are time-varying

1111 2 2 ·· ·

121 1 1

ϕ 1 ϕ 2 ϕ 3 1 − ϕ 4 1 1

1 − p2 p3 1 − p4 1 1

Survival probability is .

Recapture (detection) probability is .

Accounts for variation in e.g. environmental conditions (survival) or sampling effort
(detection).

ϕt = Pr(zt+1 = 1|zt = 1)

pt = Pr(yt = 1|zt = 1)

Capture, mark and recapture

Arti�cial marks

Capture, mark and recapture

Natural marks

White-throated Dipper (Cinclus cinclus)

Gilbert Marzolin

The famous Dipper example

294 dippers captured and recaptured between 1981 and
1987 with known sex and wing length

1 1 1 1 1 1 0 M

1 1 1 1 1 0 0 F

1 1 1 1 0 0 0 M

1 1 1 1 0 0 0 F

1 1 0 1 1 1 0 F

1 1 0 0 0 0 0 M

1 1 0 0 0 0 0 M

1 1 0 0 0 0 0 M

year_1981 year_1982 year_1983 year_1984 year_1985 year_1986 year_1987 sex

Back to Nimble.

Our model so far

hmm.phip <- nimbleCode({
 phi ~ dunif(0, 1) # prior survival
 p ~ dunif(0, 1) # prior detection
 # likelihood
 gamma[1,1] <- phi # Pr(alive t -> alive t+1)
 gamma[1,2] <- 1 - phi # Pr(alive t -> dead t+1)
 gamma[2,1] <- 0 # Pr(dead t -> alive t+1)
 gamma[2,2] <- 1 # Pr(dead t -> dead t+1)
 delta[1] <- 1 # Pr(alive t = 1) = 1
 delta[2] <- 0 # Pr(dead t = 1) = 0
 omega[1,1] <- 1 - p # Pr(alive t -> non-detected t)
 omega[1,2] <- p # Pr(alive t -> detected t)
 omega[2,1] <- 1 # Pr(dead t -> non-detected t)
 omega[2,2] <- 0 # Pr(dead t -> detected t)
 for (i in 1:N){
 z[i,first[i]] ~ dcat(delta[1:2])
 for (j in (first[i]+1):T){
 z[i,j] ~ dcat(gamma[z[i,j-1], 1:2])
 y[i,j] ~ dcat(omega[z[i,j], 1:2])
 }
 }
})

(ϕ, p)

Our model so far

 mean sd 2.5% 50% 97.5% Rhat n.eff
phi 0.56 0.03 0.52 0.56 0.62 1.00 500
p 0.89 0.03 0.83 0.89 0.94 1.13 273

(ϕ, p)

The CJS model

hmm.phitpt <- nimbleCode({
 delta[1] <- 1 # Pr(alive t = 1) = 1
 delta[2] <- 0 # Pr(dead t = 1) = 0
 for (t in 1:(T-1)){
 phi[t] ~ dunif(0, 1) # prior survival
 gamma[1,1,t] <- phi[t] # Pr(alive t -> alive t+1)
 gamma[1,2,t] <- 1 - phi[t] # Pr(alive t -> dead t+1)
 gamma[2,1,t] <- 0 # Pr(dead t -> alive t+1)
 gamma[2,2,t] <- 1 # Pr(dead t -> dead t+1)
 p[t] ~ dunif(0, 1) # prior detection
 omega[1,1,t] <- 1 - p[t] # Pr(alive t -> non-detected t)
 omega[1,2,t] <- p[t] # Pr(alive t -> detected t)
 omega[2,1,t] <- 1 # Pr(dead t -> non-detected t)
 omega[2,2,t] <- 0 # Pr(dead t -> detected t)
 }
 # likelihood
 for (i in 1:N){
 z[i,first[i]] ~ dcat(delta[1:2])
 for (j in (first[i]+1):T){
 z[i,j] ~ dcat(gamma[z[i,j-1], 1:2, j-1])
 y[i,j] ~ dcat(omega[z[i,j], 1:2, j-1])
 }
 }

(ϕt, pt)

The CJS model

hmm.phitpt <- nimbleCode({
 delta[1] <- 1 # Pr(alive t = 1) = 1
 delta[2] <- 0 # Pr(dead t = 1) = 0
 for (t in 1:(T-1)){
 phi[t] ~ dunif(0, 1) # prior survival
 gamma[1,1,t] <- phi[t] # Pr(alive t -> alive t+1)
 gamma[1,2,t] <- 1 - phi[t] # Pr(alive t -> dead t+1)
 gamma[2,1,t] <- 0 # Pr(dead t -> alive t+1)
 gamma[2,2,t] <- 1 # Pr(dead t -> dead t+1)
 p[t] ~ dunif(0, 1) # prior detection
 omega[1,1,t] <- 1 - p[t] # Pr(alive t -> non-detected t)
 omega[1,2,t] <- p[t] # Pr(alive t -> detected t)
 omega[2,1,t] <- 1 # Pr(dead t -> non-detected t)
 omega[2,2,t] <- 0 # Pr(dead t -> detected t)
 }
 # likelihood
 for (i in 1:N){
 z[i,first[i]] ~ dcat(delta[1:2])
 for (j in (first[i]+1):T){
 z[i,j] ~ dcat(gamma[z[i,j-1], 1:2, j-1])
 y[i,j] ~ dcat(omega[z[i,j], 1:2, j-1])
 }
 }

(ϕt, pt)

The CJS model

hmm.phitpt <- nimbleCode({
 delta[1] <- 1 # Pr(alive t = 1) = 1
 delta[2] <- 0 # Pr(dead t = 1) = 0
 for (t in 1:(T-1)){
 phi[t] ~ dunif(0, 1) # prior survival
 gamma[1,1,t] <- phi[t] # Pr(alive t -> alive t+1)
 gamma[1,2,t] <- 1 - phi[t] # Pr(alive t -> dead t+1)
 gamma[2,1,t] <- 0 # Pr(dead t -> alive t+1)
 gamma[2,2,t] <- 1 # Pr(dead t -> dead t+1)
 p[t] ~ dunif(0, 1) # prior detection
 omega[1,1,t] <- 1 - p[t] # Pr(alive t -> non-detected t)
 omega[1,2,t] <- p[t] # Pr(alive t -> detected t)
 omega[2,1,t] <- 1 # Pr(dead t -> non-detected t)
 omega[2,2,t] <- 0 # Pr(dead t -> detected t)
 }
 # likelihood
 for (i in 1:N){
 z[i,first[i]] ~ dcat(delta[1:2])
 for (j in (first[i]+1):T){
 z[i,j] ~ dcat(gamma[z[i,j-1], 1:2, j-1])
 y[i,j] ~ dcat(omega[z[i,j], 1:2, j-1])
 }
 }

(ϕt, pt)

The CJS model

hmm.phitpt <- nimbleCode({
 delta[1] <- 1 # Pr(alive t = 1) = 1
 delta[2] <- 0 # Pr(dead t = 1) = 0
 for (t in 1:(T-1)){
 phi[t] ~ dunif(0, 1) # prior survival
 gamma[1,1,t] <- phi[t] # Pr(alive t -> alive t+1)
 gamma[1,2,t] <- 1 - phi[t] # Pr(alive t -> dead t+1)
 gamma[2,1,t] <- 0 # Pr(dead t -> alive t+1)
 gamma[2,2,t] <- 1 # Pr(dead t -> dead t+1)
 p[t] ~ dunif(0, 1) # prior detection
 omega[1,1,t] <- 1 - p[t] # Pr(alive t -> non-detected t)
 omega[1,2,t] <- p[t] # Pr(alive t -> detected t)
 omega[2,1,t] <- 1 # Pr(dead t -> non-detected t)
 omega[2,2,t] <- 0 # Pr(dead t -> detected t)
 }
 # likelihood
 for (i in 1:N){
 z[i,first[i]] ~ dcat(delta[1:2])
 for (j in (first[i]+1):T){
 z[i,j] ~ dcat(gamma[z[i,j-1], 1:2, j-1])
 y[i,j] ~ dcat(omega[z[i,j], 1:2, j-1])
 }
 }

(ϕt, pt)

The CJS model

hmm.phitpt <- nimbleCode({
 delta[1] <- 1 # Pr(alive t = 1) = 1
 delta[2] <- 0 # Pr(dead t = 1) = 0
 for (t in 1:(T-1)){
 phi[t] ~ dunif(0, 1) # prior survival
 gamma[1,1,t] <- phi[t] # Pr(alive t -> alive t+1)
 gamma[1,2,t] <- 1 - phi[t] # Pr(alive t -> dead t+1)
 gamma[2,1,t] <- 0 # Pr(dead t -> alive t+1)
 gamma[2,2,t] <- 1 # Pr(dead t -> dead t+1)
 p[t] ~ dunif(0, 1) # prior detection
 omega[1,1,t] <- 1 - p[t] # Pr(alive t -> non-detected t)
 omega[1,2,t] <- p[t] # Pr(alive t -> detected t)
 omega[2,1,t] <- 1 # Pr(dead t -> non-detected t)
 omega[2,2,t] <- 0 # Pr(dead t -> detected t)
 }
 # likelihood
 for (i in 1:N){
 z[i,first[i]] ~ dcat(delta[1:2])
 for (j in (first[i]+1):T){
 z[i,j] ~ dcat(gamma[z[i,j-1], 1:2, j-1])
 y[i,j] ~ dcat(omega[z[i,j], 1:2, j-1])
 }
 }

(ϕt, pt)

The CJS model

 mean sd 2.5% 50% 97.5% Rhat n.eff
phi[1] 0.73 0.14 0.46 0.72 0.99 1.02 199
phi[2] 0.45 0.07 0.32 0.44 0.59 1.02 410
phi[3] 0.48 0.06 0.35 0.48 0.59 1.01 506
phi[4] 0.63 0.06 0.52 0.63 0.75 1.03 415
phi[5] 0.60 0.06 0.49 0.60 0.72 1.01 365
phi[6] 0.74 0.13 0.51 0.74 0.97 1.10 38
p[1] 0.66 0.14 0.38 0.67 0.89 1.01 344
p[2] 0.87 0.08 0.68 0.89 0.98 1.02 249
p[3] 0.88 0.07 0.73 0.89 0.97 1.02 307
p[4] 0.87 0.06 0.74 0.88 0.96 1.05 333
p[5] 0.90 0.05 0.77 0.91 0.98 1.01 224
p[6] 0.72 0.13 0.50 0.72 0.97 1.08 37

(ϕt, pt)

Time-varying survival

hmm.phitp <- nimbleCode({
 for (t in 1:(T-1)){
 phi[t] ~ dunif(0, 1) # prior survival
 gamma[1,1,t] <- phi[t] # Pr(alive t -> alive t+1)
 gamma[1,2,t] <- 1 - phi[t] # Pr(alive t -> dead t+1)
 gamma[2,1,t] <- 0 # Pr(dead t -> alive t+1)
 gamma[2,2,t] <- 1 # Pr(dead t -> dead t+1)
 }
 p ~ dunif(0, 1) # prior detection
 delta[1] <- 1 # Pr(alive t = 1) = 1
 delta[2] <- 0 # Pr(dead t = 1) = 0
 omega[1,1] <- 1 - p # Pr(alive t -> non-detected t)
 omega[1,2] <- p # Pr(alive t -> detected t)
 omega[2,1] <- 1 # Pr(dead t -> non-detected t)
 omega[2,2] <- 0 # Pr(dead t -> detected t)
 # likelihood
 for (i in 1:N){
 z[i,first[i]] ~ dcat(delta[1:2])
 for (j in (first[i]+1):T){
 z[i,j] ~ dcat(gamma[z[i,j-1], 1:2, j-1])
 y[i,j] ~ dcat(omega[z[i,j], 1:2])
 }
 }

(ϕt, p)

Time-varying survival

 mean sd 2.5% 50% 97.5% Rhat n.eff
phi[1] 0.63 0.10 0.42 0.63 0.82 1.04 564
phi[2] 0.46 0.06 0.35 0.46 0.59 1.01 629
phi[3] 0.48 0.05 0.37 0.48 0.59 1.00 610
phi[4] 0.62 0.06 0.51 0.62 0.73 1.00 553
phi[5] 0.61 0.05 0.50 0.61 0.72 1.00 568
phi[6] 0.59 0.05 0.48 0.59 0.69 1.03 463
p 0.89 0.03 0.82 0.89 0.95 1.04 211

(ϕt, p)

Time-varying detection

hmm.phipt <- nimbleCode({
 phi ~ dunif(0, 1) # prior survival
 gamma[1,1] <- phi # Pr(alive t -> alive t+1)
 gamma[1,2] <- 1 - phi # Pr(alive t -> dead t+1)
 gamma[2,1] <- 0 # Pr(dead t -> alive t+1)
 gamma[2,2] <- 1 # Pr(dead t -> dead t+1)
 delta[1] <- 1 # Pr(alive t = 1) = 1
 delta[2] <- 0 # Pr(dead t = 1) = 0
 for (t in 1:(T-1)){
 p[t] ~ dunif(0, 1) # prior detection
 omega[1,1,t] <- 1 - p[t] # Pr(alive t -> non-detected t)
 omega[1,2,t] <- p[t] # Pr(alive t -> detected t)
 omega[2,1,t] <- 1 # Pr(dead t -> non-detected t)
 omega[2,2,t] <- 0 # Pr(dead t -> detected t)
 }
 # likelihood
 for (i in 1:N){
 z[i,first[i]] ~ dcat(delta[1:2])
 for (j in (first[i]+1):T){
 z[i,j] ~ dcat(gamma[z[i,j-1], 1:2])
 y[i,j] ~ dcat(omega[z[i,j], 1:2, j-1])
 }
 }

(ϕ, pt)

Time-varying detection

 mean sd 2.5% 50% 97.5% Rhat n.eff
phi 0.56 0.03 0.52 0.56 0.61 1.02 381
p[1] 0.75 0.12 0.48 0.77 0.93 1.03 452
p[2] 0.85 0.08 0.68 0.86 0.97 1.02 359
p[3] 0.85 0.07 0.69 0.85 0.96 1.00 316
p[4] 0.89 0.05 0.77 0.89 0.97 1.00 412
p[5] 0.91 0.04 0.82 0.92 0.98 1.00 376
p[6] 0.90 0.07 0.73 0.91 1.00 1.07 111

(ϕ, pt)

How to select a best model?

Model selection
Which of the four models above is best supported by the data?

The proportion of explained variance is problematic, because the more variables
you have, the bigger is.

The idea is to penalize models with too many parameters.

R2

R2

Akaike information criterion (AIC)

with the likelihood and the number of parameters .

AIC = −2 log(L(θ̂1, … , θ̂K)) + 2K

L K θi

Akaike information criterion (AIC)

A measure of goodness-of-�t of the model to the data: the more parameters you have,
the smaller the deviance is (or the bigger the likelihood is).

AIC = −2 log(L(θ̂1, … , θ̂K)) + 2K

Akaike information criterion (AIC)

A penalty: twice the number of parameters

AIC = −2 log(L(θ̂1, … , θ̂K)) + 2K

K

Akaike information criterion (AIC)

AIC makes the balance between quality of �t and complexity of a model.

Best model is the one with lowest AIC value.

Two models are dif�cult to distinguish if .ΔAIC < 2

Bayesian version

Watanabe-Akaike (Widely-Applicable) Information Criteria or WAIC:

where is the posterior mean of the likelihood evaluated pointwise at
each th observation.

 is a penalty computed using the posterior variance of the likelihood.

More in this video https://www.youtube.com/watch?v=vSjL2Zc-gEQ by R. McElreath.

Nimble provides the conditional WAIC, where all parameters directly involved in the
likelihood are considered. If you would want to calculate the marginal WAIC,
integrating over latent variables, you could monitor the relevant nodes and carry out
the calculations yourself based on the MCMC output.

WAIC = −2
n

∑
i=1

log E[Pr(yi ∣ θ)] + 2pWAIC

E[p(yi ∣ θ)]
i

pWAIC

https://www.youtube.com/watch?v=vSjL2Zc-gEQ

How to compute WAIC in Nimble?

parameters.to.save <- c("phi", "p")
mcmc.phitpt <- nimbleMCMC(code = hmm.phitpt,
 constants = my.constants,
 data = my.data,
 inits = initial.values,
 monitors = parameters.to.save,
 niter = n.iter,
 nburnin = n.burnin,
 nchains = n.chains)

How to compute WAIC in Nimble?

parameters.to.save <- c("phi", "p", "z")
mcmc.phitpt <- nimbleMCMC(code = hmm.phitpt,
 constants = my.constants,
 data = my.data,
 inits = initial.values,
 monitors = parameters.to.save,
 niter = n.iter,
 nburnin = n.burnin,
 nchains = n.chains,
 WAIC = TRUE)

Dipper example - continued

 model WAIC
1 (phi,p) 265.9168
2 (phit,p) 277.5514
3 (phi,pt) 270.2175
4 (phit,pt) 308.8417

Live demo

Can we explain time variation?

Embrace heterogeneity
Include temporal covariates, say .

.

Let's investigate the effect of water �ow on dipper survival (Marzolin 2002).

xt

logit(ϕt) = β1 + β2xt

https://doi.org/10.2307/3802934

hmm.phiflowp <- nimbleCode({
 delta[1] <- 1 # Pr(alive t = 1) = 1
 delta[2] <- 0 # Pr(dead t = 1) = 0
 for (t in 1:(T-1)){
 logit(phi[t]) <- beta[1] + beta[2] * flow[t]
 gamma[1,1,t] <- phi[t] # Pr(alive t -> alive t+1)
 gamma[1,2,t] <- 1 - phi[t] # Pr(alive t -> dead t+1)
 gamma[2,1,t] <- 0 # Pr(dead t -> alive t+1)
 gamma[2,2,t] <- 1 # Pr(dead t -> dead t+1)
 }
 p ~ dunif(0, 1) # prior detection
 omega[1,1] <- 1 - p # Pr(alive t -> non-detected t)
 omega[1,2] <- p # Pr(alive t -> detected t)
 omega[2,1] <- 1 # Pr(dead t -> non-detected t)
 omega[2,2] <- 0 # Pr(dead t -> detected t)
 beta[1] ~ dnorm(0, 1.5) # prior intercept
 beta[2] ~ dnorm(0, 1.5) # prior slope
 # likelihood
 for (i in 1:N){
 z[i,first[i]] ~ dcat(delta[1:2])
 for (j in (first[i]+1):T){
 z[i,j] ~ dcat(gamma[z[i,j-1], 1:2, j-1])
 y[i,j] ~ dcat(omega[z[i,j], 1:2])
 }
 }
})

water flow in L/s
water_flow <- c(443, 1114, 529, 434, 627, 466) # 1981, 1982, ..., 1987
water_flow_st <- (water_flow - mean(water_flow))/sd(water_flow)

my.constants <- list(N = nrow(y),
 T = ncol(y),
 first = first,
 flow = water_flow_st)

initial.values <- function() list(beta = rnorm(2,0,1),
 p = runif(1,0,1),
 z = zinits)

parameters.to.save <- c("beta", "p", "phi")

Regression intercept and slope

Time-dependent (covariate constrained) survival probability estimates

Embrace heterogeneity
Include temporal covariates, say

If temporal variation not fully explained by covariates, add random effects

xt

logit(ϕt) = β1 + β2xt

logit(ϕt) = β1 + β2xt + εt, εt ∼ N(0, σ2)

hmm.phiflowREp <- nimbleCode({
 for (t in 1:(T-1)){
 logit(phi[t]) <- beta[1] + beta[2] * flow[t] + eps[t]
 eps[t] ~ dnorm(0, sd = sdeps)
 ...
 }
 sdeps ~ dunif(0,10)
 ...

What about individual heterogeneity?
Discrete covariate like, e.g., sex

Continuous covariate like, e.g., mass or size

Sex and wing length in Dipper

1 1 1 1 1 1 0 M

1 1 1 1 1 0 0 F

1 1 1 1 0 0 0 M

1 1 1 1 0 0 0 F

1 1 0 1 1 1 0 F

1 1 0 0 0 0 0 M

1 1 0 0 0 0 0 M

1 1 0 0 0 0 0 M

year_1981 year_1982 year_1983 year_1984 year_1985 year_1986 year_1987 sex

Sex effect
Let's use a covariate that takes value 0 if male, and 1 if female

And write for bird

Then male survival is

And female survival is

sex

logit(ϕi) = β1 + β2 sexi i

logit(ϕi) = β1

logit(ϕi) = β1 + β2

Nimble implementation with sex as a covariate

hmm.phisexp <- nimbleCode({
...
 for (i in 1:N){
 logit(phi[i]) <- beta[1] + beta[2] * sex[i]
 gamma[1,1,i] <- phi[i] # Pr(alive t -> alive t+1)
 gamma[1,2,i] <- 1 - phi[i] # Pr(alive t -> dead t+1)
 gamma[2,1,i] <- 0 # Pr(dead t -> alive t+1)
 gamma[2,2,i] <- 1 # Pr(dead t -> dead t+1)
 }
 beta[1] ~ dnorm(mean = 0, sd = 1.5)
 beta[2] ~ dnorm(mean = 0, sd = 1.5)
 phi_male <- 1/(1+exp(-beta[1]))
 phi_female <- 1/(1+exp(-(beta[1]+beta[2])))
...
 # likelihood
 for (i in 1:N){
 z[i,first[i]] ~ dcat(delta[1:2])
 for (j in (first[i]+1):T){
 z[i,j] ~ dcat(gamma[z[i,j-1], 1:2, i])
 y[i,j] ~ dcat(omega[z[i,j], 1:2])
 }
 }
})

 mean sd 2.5% 50% 97.5% Rhat n.eff
beta[1] 0.29 0.14 0.01 0.29 0.57 1.01 237
beta[2] -0.09 0.19 -0.47 -0.10 0.29 1.01 241
p 0.90 0.03 0.83 0.90 0.95 1.02 253
phi_female 0.55 0.04 0.48 0.55 0.62 1.02 698
phi_male 0.57 0.03 0.50 0.57 0.64 1.01 237

Nimble implementation with nested indexing

Let's use a covariate that contains 1s and 2s, indicating the sex of each individual:
1 if male, and 2 if female

...
for (i in 1:N){
 phi[i] <- beta[sex[i]]
 gamma[1,1,i] <- phi[i] # Pr(alive t -> alive t+1)
 gamma[1,2,i] <- 1 - phi[i] # Pr(alive t -> dead t+1)
 gamma[2,1,i] <- 0 # Pr(dead t -> alive t+1)
 gamma[2,2,i] <- 1 # Pr(dead t -> dead t+1)
}
beta[1] ~ dunif(0,1) # male survival
beta[2] ~ dunif(0,1) # female survival
...

E.g. for individual , beta[sex[i]] gives beta[sex[2]] which will be beta[1]
or beta[2] depending on whether sex[2] is 1 or 2.

sex

i = 2

 mean sd 2.5% 50% 97.5% Rhat n.eff
beta[1] 0.57 0.03 0.50 0.57 0.63 1.00 616
beta[2] 0.55 0.03 0.48 0.55 0.62 1.02 657
p 0.90 0.03 0.83 0.90 0.95 1.10 229

What about wing length?

...
 for (i in 1:N){
 logit(phi[i]) <- beta[1] + beta[2] * winglength[i]
 gamma[1,1,i] <- phi[i] # Pr(alive t -> alive t+1)
 gamma[1,2,i] <- 1 - phi[i] # Pr(alive t -> dead t+1)
 gamma[2,1,i] <- 0 # Pr(dead t -> alive t+1)
 gamma[2,2,i] <- 1 # Pr(dead t -> dead t+1)
 }
 beta[1] ~ dnorm(mean = 0, sd = 1.5) # intercept
 beta[2] ~ dnorm(mean = 0, sd = 1.5) # slope
...

Wing length

You may test an effect of both sex and wing length, see exercise in Worksheets.

What if covariates vary with individual and time?

Think of age for example (see exercises in Worksheets); covariate or nested indexing
works �ne.

Now, think of body size across life.

Problem is we cannot record size when animal is non-detected.

Discretize in small, medium and large and treat as a state — more later.

Assume a model for covariate and �ll in missing values (imputation).

Live demo

Why Bayes?

Why Bayes? Incorporate prior information.

Vague prior
So far, we have assumed a vague prior:

With a vague prior, mean posterior survival is

With credible interval

ϕprior ∼ Beta(1, 1) = Uniform(0, 1)

ϕposterior = 0.56

[0.52, 0.62]

Posterior distribution of survival in color (two chains), prior in gray dashed line.

How to incorporate prior information?
Using information on body mass and annual survival of 27 European passerines, we
can predict survival of European dippers using only body mass.

For dippers, body mass is 59.8g, therefore with .

Assuming an informative prior .

Mean posterior with credible interval .

No increase of precision in posterior inference.

ϕ = 0.57 sd = 0.073

ϕprior ∼ Normal(0.57, 0.0732)

ϕposterior = 0.56 [0.52, 0.61]

How to incorporate prior information?
Now if you had only the three �rst years of data, what would have happened?

Width of credible interval is 0.53 (vague prior) vs. 0.24 (informative prior).

Huge increase of precision in posterior inference, a gain!120%

Compare survival posterior with and without informative prior

Prior elicitation via moment matching
The prior is not entirely satisfying

Remember the Beta distribution

Recall that the Beta distribution is a continuous distribution with values between 0
and 1. Useful for modelling survival or detection probabilities.

If , then the �rst and second moments of are:

ϕprior ∼ Normal(0.57, 0.0732)

X ∼ Beta(α, β) X

μ = E(X) =
α

α + β

σ2 = Var(X) =
αβ

(α + β)2(α + β + 1)

Moment matching
In the capture-recapture example, we know a priori that the mean of the probability
we're interested in is and its variance is .

Parameters and are seen as the moments of a distribution.

Now we look for values of and that match the observed moments of the Beta
distribution and .

We need another set of equations:

μ = 0.57 σ2 = 0.0732

μ σ2 Beta(α, β)

α β
μ σ2

α = (−)μ21 − μ

σ2

1

μ

β = α(− 1)
1

μ

Moment matching
For our model, that means:

(alpha <- ((1 - 0.57)/(0.073*0.073) - (1/0.57))*0.57^2)

[1] 25.64636

(beta <- alpha * ((1/0.57) - 1))

[1] 19.34726

Now use instead of ϕprior ∼ Beta(α = 25.6, β = 19.3)

ϕprior ∼ Normal(0.57, 0.0732)

Prior predictive checks

Unreasonable prior Reasonable prior

Linear regression

β ∼ N(0, 10002) β ∼ N(2, 0.52)

Unreasonable prior Reasonable prior

Logistic regression

logit(ϕ) = β ∼ N(0, 102) logit(ϕ) = β ∼ N(0, 1.52)

Capture-recapture models rely on assumptions

Design
No mark lost
Identity of individuals recorded without error (no false positives)
Captured individuals are a random sample

Model
Homogeneity of survival and recapture probabilities
Independence between individuals (overdispersion)

Test validity of assumptions
These assumptions should be valid, whatever inferential framework
Use goodness-of-�t tests — Pradel et al. (2005)
R implementation with package R2ucare
Posterior predictive checks can also be used (not covered; Gelman et al. 2020)

https://besjournals.onlinelibrary.wiley.com/doi/full/10.1111/2041-210X.13014
https://arxiv.org/pdf/2011.01808.pdf

Parameter-redundancy issue

Last survival and recapture probabilities cannot be estimated separately.

Poor mixing of the chains.

Prior-posterior overlap for and ϕ4 ϕ6

Prior-posterior overlap for and p3 p7

What does survival actually mean in capture-recapture ?

Survival refers to the study area.

Mortality and permanent emigration are confounded.

Therefore we estimate apparent survival, not true survival.

Apparent survival probability = true survival × study area �delity.

Consequently, apparent survival < true survival unless study area �delity = 1.

Use caution with interpretation. If possible, combine with ring-recovery data, or go
spatial to get closer to true survival.

Further reading

CJS state-space formulation Gimenez et al. (2007) and Royle (2008).

Work on missing values by Bonner et al. (2006) and Langrock and King (2013) and
Worthington et al. (2015).

The example on how to incorporate prior information is in McCarthy and Masters
(2005).

Combine live recapture w/ dead recoveries by Lebreton et al. (1999) and go spatial to
account for emigration Gilroy et al. (2012) and Schaub & Royle (2014).

Non-identi�ability in a Bayesian framework, see Gimenez et al. (2009) and book by
Cole (2020).

https://oliviergimenez.github.io/pubs/Gimenezetal2007EcologicalModelling.pdf
https://onlinelibrary.wiley.com/doi/10.1111/j.1541-0420.2007.00891.x
https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1541-0420.2005.00399.x
https://projecteuclid.org/journals/annals-of-applied-statistics/volume-7/issue-3/Maximum-likelihood-estimation-of-markrecapturerecovery-models-in-the-presence-of/10.1214/13-AOAS644.full
https://link.springer.com/article/10.1007/s13253-014-0184-z
https://besjournals.onlinelibrary.wiley.com/doi/abs/10.1111/j.1365-2664.2005.01101.x
https://www.tandfonline.com/doi/pdf/10.1080/00063659909477230
https://esajournals.onlinelibrary.wiley.com/doi/full/10.1890/12-0124.1
https://besjournals.onlinelibrary.wiley.com/doi/full/10.1111/2041-210X.12134
https://oliviergimenez.github.io/pubs/Gimenezetal2009-weakidentifiability.pdf
https://www.routledge.com/Parameter-Redundancy-and-Identifiability/Cole/p/book/9781498720878

On the move: Transition estimation
The team

last updated: 2021-05-18

Thank you Canada!

Wintering site �delity in Canada Geese

3 sites Carolinas, Chesapeake, Mid-Atlantic, with 21277 banded geese,
data kindly provided by Jay Hestbeck (Hestbeck et al. 1991)

0 2 2 0 0 0

0 0 0 0 0 2

0 0 0 1 0 0

0 0 2 0 0 0

0 3 0 0 3 2

0 0 0 2 0 0

2 2 0 2 3 2

0 0 0 0 2 2

year_1984 year_1985 year_1986 year_1987 year_1988 year_1989

https://esajournals.onlinelibrary.wiley.com/doi/10.2307/2937193

Biological inference

Biological inference

Biological inference

Biological inference

The model construction: How we should think.

The model construction: How we should think.

The model construction: How we should think.

The model construction: How we should think.

HMM model for dispersal with 2 sites (drop Carolinas)

Transition matrix

Γ =
⎛
⎜
⎝

zt = A zt = B zt = D

ϕA(1 − ψAB) ϕAψAB 1 − ϕA

ϕBψBA ϕB(1 − ψBA) 1 − ϕB

0 0 1

⎞
⎟
⎠

zt−1 = A

zt−1 = B

zt−1 = D

HMM model for dispersal with 2 sites (drop Carolinas)

Observation matrix

Ω =
⎛
⎜
⎝

yt = 0 yt = 1 yt = 2

1 − pA pA 0

1 − pB 0 pB

1 0 0

⎞
⎟
⎠

zt = A

zt = B

zt = D

HMM model for dispersal with 2 sites (drop Carolinas)

Observation matrix

Note: You may code non-detections as , and the �rst column in the observation
matrix should go last.

Ω =
⎛
⎜
⎝

yt = 0 yt = 1 yt = 2

1 − pA pA 0

1 − pB 0 pB

1 0 0

⎞
⎟
⎠

zt = A

zt = B

zt = D

yt = 2

Our model

multisite <- nimbleCode({
 # ---
 # Parameters:
 # phiA: survival probability site A
 # phiB: survival probability site B
 # psiAB: movement probability from site A to site B
 # psiBA: movement probability from site B to site A
 # pA: recapture probability site A
 # pB: recapture probability site B
 # ---
 # States (z):
 # 1 alive at A
 # 2 alive at B
 # 3 dead
 # Observations (y):
 # 1 not seen
 # 2 seen at A
 # 3 seen at B
 # ---
...

(ϕA, ϕB, ψAB, ψBA, pA, pB)

Our model

multisite <- nimbleCode({
...
 # Priors
 phiA ~ dunif(0, 1)
 phiB ~ dunif(0, 1)
 psiAB ~ dunif(0, 1)
 psiBA ~ dunif(0, 1)
 pA ~ dunif(0, 1)
 pB ~ dunif(0, 1)
...

(ϕA, ϕB, ψAB, ψBA, pA, pB)

Our model

multisite <- nimbleCode({
...
 # initial state probabilities
 delta[1] <- piA # Pr(alive in A t = 1)
 delta[2] <- 1 - piA # Pr(alive in B t = 1)
 delta[3] <- 0 # Pr(dead t = 1) = 0
...

Actually, initial state is known exactly. It is alive at site of initial capture, and is just
the proportion of individuals �rst captured in site A, no need to estimate it.

Instead of z[i,first[i]] ~ dcat(delta[1:3]), use z[i,first[i]] <-
y[i,first[i]]-1 instead in the likelihood.

Same trick applies to CJS models.

(ϕA, ϕB, ψAB, ψBA, pA, pB)

πA

Our model

multisite <- nimbleCode({
...
 # probabilities of state z(t+1) given z(t)
 # (read as gamma[z(t),z(t+1)] = gamma[fromState,toState])

 gamma[1,1] <- phiA * (1 - psiAB)
 gamma[1,2] <- phiA * psiAB
 gamma[1,3] <- 1 - phiA
 gamma[2,1] <- phiB * psiBA
 gamma[2,2] <- phiB * (1 - psiBA)
 gamma[2,3] <- 1 - phiB
 gamma[3,1] <- 0
 gamma[3,2] <- 0
 gamma[3,3] <- 1
...

(ϕA, ϕB, ψAB, ψBA, pA, pB)

Our model

multisite <- nimbleCode({
...
 # probabilities of y(t) given z(t)
 # (read as omega[y(t),z(t)] = omega[Observation,State])

 omega[1,1] <- 1 - pA # Pr(alive A t -> non-detected t)
 omega[1,2] <- pA # Pr(alive A t -> detected A t)
 omega[1,3] <- 0 # Pr(alive A t -> detected B t)
 omega[2,1] <- 1 - pB # Pr(alive B t -> non-detected t)
 omega[2,2] <- 0 # Pr(alive B t -> detected A t)
 omega[2,3] <- pB # Pr(alive B t -> detected B t)
 omega[3,1] <- 1 # Pr(dead t -> non-detected t)
 omega[3,2] <- 0 # Pr(dead t -> detected A t)
 omega[3,3] <- 0 # Pr(dead t -> detected B t)
...

(ϕA, ϕB, ψAB, ψBA, pA, pB)

Our model

multisite <- nimbleCode({
...
 # likelihood
 for (i in 1:N){
 # latent state at first capture
 z[i,first[i]] <- y[i,first[i]] - 1
 for (t in (first[i]+1):K){
 # z(t) given z(t-1)
 z[i,t] ~ dcat(gamma[z[i,t-1],1:3])
 # y(t) given z(t)
 y[i,t] ~ dcat(omega[z[i,t],1:3])
 }
 }
})

(ϕA, ϕB, ψAB, ψBA, pA, pB)

 mean sd 2.5% 50% 97.5% Rhat n.eff
pA 0.53 0.09 0.36 0.52 0.73 1.04 122
pB 0.40 0.04 0.32 0.40 0.48 1.07 165
phiA 0.60 0.05 0.50 0.60 0.71 1.01 195
phiB 0.69 0.04 0.62 0.69 0.76 1.04 199
psiAB 0.27 0.06 0.16 0.26 0.40 1.04 244
psiBA 0.07 0.02 0.04 0.07 0.12 1.03 360

What if there are three sites?
The transition probabilities still need to be between 0 and 1.

Another constraint is that the sum of three probabilities of departure from a given
site should be one.

Two methods to ful�ll both constraints.

Dirichlet prior
Multinomial logit link

Dirichlet prior with parameter alpha

Nimble implementation of the Dirichlet prior

multisite <- nimbleCode({
...
 # transitions: Dirichlet priors
 psiA[1:3] ~ ddirch(alpha[1:3]) # psiAA, psiAB, psiAC
 psiB[1:3] ~ ddirch(alpha[1:3]) # psiBA, psiBB, psiCC
 psiC[1:3] ~ ddirch(alpha[1:3]) # psiCA, psiCB, psiCC
...

Nimble implementation of the Dirichlet prior

multisite <- nimbleCode({
...
 # probabilities of state z(t+1) given z(t)
 gamma[1,1] <- phiA * psiA[1]
 gamma[1,2] <- phiA * psiA[2]
 gamma[1,3] <- phiA * psiA[3]
 gamma[1,4] <- 1 - phiA
 gamma[2,1] <- phiB * psiB[1]
 gamma[2,2] <- phiB * psiB[2]
 gamma[2,3] <- phiB * psiB[3]
 gamma[2,4] <- 1 - phiB
 gamma[3,1] <- phiC * psiC[1]
 gamma[3,2] <- phiC * psiC[2]
 gamma[3,3] <- phiC * psiC[3]
 gamma[3,4] <- 1 - phiC
 gamma[4,1] <- 0
 gamma[4,2] <- 0
 gamma[4,3] <- 0
 gamma[4,4] <- 1
...

 mean sd 2.5% 50% 97.5% Rhat n.eff
pA 0.50 0.09 0.34 0.50 0.70 1.00 153
pB 0.47 0.05 0.38 0.46 0.58 1.01 152
pC 0.24 0.06 0.14 0.23 0.37 1.01 117
phiA 0.61 0.05 0.50 0.61 0.71 1.00 230
phiB 0.70 0.04 0.62 0.70 0.77 1.04 183
phiC 0.77 0.07 0.64 0.77 0.92 1.07 104
psiA[1] 0.75 0.05 0.63 0.75 0.84 1.01 463
psiA[2] 0.23 0.05 0.14 0.22 0.34 1.01 441
psiA[3] 0.02 0.02 0.00 0.02 0.08 1.03 201
psiB[1] 0.07 0.02 0.04 0.07 0.12 1.00 275
psiB[2] 0.83 0.04 0.72 0.83 0.90 1.04 129
psiB[3] 0.10 0.04 0.04 0.09 0.18 1.06 129
psiC[1] 0.02 0.01 0.00 0.02 0.06 1.00 624
psiC[2] 0.21 0.05 0.12 0.21 0.33 1.02 420
psiC[3] 0.77 0.06 0.64 0.77 0.86 1.02 419

Multinomial logit

Say we have sites or states.

Specify a normal prior distribution for transition parameters . These

probabilities are on the multinomial logit scale, possibly function of covariates.

To back-transform these parameters, we use:

This ensures that all are between 0 and 1, and their sum is 1.

Last parameter is calculated as the complement

P

P − 1 αj

βj = , j = 1, … , P − 1
exp(αj)

1 +
P

∑
p=1

exp(αp)

βj

βP = 1 −
P−1

∑
j=1

exp(βj)

Nimble implementation of the Dirichlet prior

multisite <- nimbleCode({
...
 # transitions: multinomial logit
 # normal priors on logit of all but one transition probs
 for (i in 1:2){
 lpsiA[i] ~ dnorm(0, sd = 1000)
 lpsiB[i] ~ dnorm(0, sd = 1000)
 lpsiC[i] ~ dnorm(0, sd = 1000)
 }
 # constrain the transitions such that their sum is < 1
 for (i in 1:2){
 psiA[i] <- exp(lpsiA[i]) / (1 + exp(lpsiA[1]) + exp(lpsiA[2]))
 psiB[i] <- exp(lpsiB[i]) / (1 + exp(lpsiB[1]) + exp(lpsiB[2]))
 psiC[i] <- exp(lpsiC[i]) / (1 + exp(lpsiC[1]) + exp(lpsiC[2]))
 }
 # last transition probability
 psiA[3] <- 1 - psiA[1] - psiA[2]
 psiB[3] <- 1 - psiB[1] - psiB[2]
 psiC[3] <- 1 - psiC[1] - psiC[2]
...

Nimble implementation of the Dirichlet prior

multisite <- nimbleCode({
...
 # probabilities of state z(t+1) given z(t)
 gamma[1,1] <- phiA * psiA[1]
 gamma[1,2] <- phiA * psiA[2]
 gamma[1,3] <- phiA * psiA[3]
 gamma[1,4] <- 1 - phiA
 gamma[2,1] <- phiB * psiB[1]
 gamma[2,2] <- phiB * psiB[2]
 gamma[2,3] <- phiB * psiB[3]
 gamma[2,4] <- 1 - phiB
 gamma[3,1] <- phiC * psiC[1]
 gamma[3,2] <- phiC * psiC[2]
 gamma[3,3] <- phiC * psiC[3]
 gamma[3,4] <- 1 - phiC
 gamma[4,1] <- 0
 gamma[4,2] <- 0
 gamma[4,3] <- 0
 gamma[4,4] <- 1
...

 mean sd 2.5% 50% 97.5% Rhat n.eff
pA 0.52 0.08 0.36 0.52 0.69 1.02 154
pB 0.45 0.05 0.35 0.44 0.55 1.10 129
pC 0.26 0.06 0.15 0.25 0.39 1.01 94
phiA 0.60 0.05 0.50 0.60 0.71 1.01 244
phiB 0.70 0.04 0.63 0.70 0.77 1.11 168
phiC 0.76 0.07 0.63 0.76 0.88 1.03 126
psiA[1] 0.76 0.05 0.64 0.76 0.85 1.02 477
psiA[2] 0.24 0.05 0.15 0.24 0.36 1.01 486
psiA[3] 0.00 0.00 0.00 0.00 0.00 1.35 47
psiB[1] 0.07 0.02 0.04 0.06 0.11 1.03 394
psiB[2] 0.85 0.04 0.77 0.86 0.91 1.04 133
psiB[3] 0.08 0.03 0.04 0.08 0.16 1.01 79
psiC[1] 0.01 0.01 0.00 0.01 0.04 1.00 514
psiC[2] 0.21 0.05 0.12 0.21 0.33 1.00 299
psiC[3] 0.78 0.06 0.65 0.78 0.88 1.00 270

Live demo

Sites may be states.

Examples of multistate models

Epidemiological or disease states: sick/healthy, uninfected/infected/recovered.

Morphological states: small/medium/big, light/medium/heavy.

Breeding states: e.g. breeder/non-breeder, failed breeder, �rst-time breeder.

Developmental or life-history states: e.g. juvenile/subadult/adult.

Social states: e.g. solitary/group-living, subordinate/dominant.

Death states: e.g. alive, dead from harvest, dead from natural causes.

States = individual, time-speci�c categorical covariates.

Sooty shearwater (David Boyle)

Sooty shearwaters and life-history tradeoffs

We consider data collected between 1940 and 1957 by Lance Richdale on Sooty
shearwaters (aka titis).

These data were reanalyzed with multistate models by Sco�eld et al. (2001) who
kindly provided us with the data.

Following the way the data were collected, four states were originally considered:

Alive breeder;
Accompanied by another bird in a burrow;
Alone in a burrow;
On the surface;
Dead.

https://link.springer.com/article/10.1198/108571101750524607

Sooty shearwaters and life-history tradeoffs

Because of numerical issues, we pooled all alive states but breeder together in a non-
breeder state (NB) that includes:

failed breeders (birds that had bred previously – skip reproduction or divorce) and
pre-breeders (birds that had yet to breed).

Note that because burrows were not checked before hatching, some birds in the
category NB might have already failed.

We therefore regard those birds in the B state as successful breeders, and those
in the NB state as nonbreeders plus prebreeders and failed breeders.

Observations are non-detections, and detections as breeder and non-breeder

Does breeding affect survival? Does breeding in current year affect breeding next
year?

0 0 0 0 0 0 1

0 0 0 0 0 0 1

0 0 0 0 0 0 1

0 0 0 0 0 0 1

0 0 0 0 0 0 1

0 0 0 0 0 0 1

0 0 0 0 0 0 1

0 0 0 0 0 0 1

year_1942 year_1943 year_1944 year_1949 year_1952 year_1953 year_1956

HMM model for transition between states

Transition matrix

Costs or reproduction would re�ect in future reproduction
 or survival .

Γ =
⎛
⎜
⎝

zt = B zt = NB zt = D

ϕB(1 − ψBNB) ϕBψBNB 1 − ϕB

ϕNBψNBB ϕNB(1 − ψNBB) 1 − ϕNB

0 0 1

⎞
⎟
⎠

zt−1 = B

zt−1 = NB

zt−1 = D

ψBB = 1 − ψBNB < ψNBB ϕB < ϕNB

HMM model for transition between states

Observation matrix

Ω =
⎛
⎜
⎝

yt = 0 yt = 1 yt = 2

1 − pB pB 0

1 − pNB 0 pNB

1 0 0

⎞
⎟
⎠

zt = B

zt = NB

zt = D

Our model

multistate <- nimbleCode({
 # ---
 # Parameters:
 # phiB: survival probability state B
 # phiNB: survival probability state NB
 # psiBNB: transition probability from B to NB
 # psiNBB: transition probability from NB to B
 # pB: recapture probability B
 # pNB: recapture probability NB
 # ---
 # States (z):
 # 1 alive B
 # 2 alive NB
 # 3 dead
 # Observations (y):
 # 1 not seen
 # 2 seen as B
 # 3 seen as NB
 # ---
...

(ϕNB, ϕB, ψNBB, ψBNB, pNB, pB)

Our model

multistate <- nimbleCode({
...
 # Priors
 phiB ~ dunif(0, 1)
 phiNB ~ dunif(0, 1)
 psiBNB ~ dunif(0, 1)
 psiNBB ~ dunif(0, 1)
 pB ~ dunif(0, 1)
 pNB ~ dunif(0, 1)
...

(ϕNB, ϕB, ψNBB, ψBNB, pNB, pB)

Our model

multistate <- nimbleCode({
...
 # probabilities of state z(t+1) given z(t)
 gamma[1,1] <- phiB * (1 - psiBNB)
 gamma[1,2] <- phiB * psiBNB
 gamma[1,3] <- 1 - phiB
 gamma[2,1] <- phiNB * psiNBB
 gamma[2,2] <- phiNB * (1 - psiNBB)
 gamma[2,3] <- 1 - phiNB
 gamma[3,1] <- 0
 gamma[3,2] <- 0
 gamma[3,3] <- 1
...

(ϕNB, ϕB, ψNBB, ψBNB, pNB, pB)

Our model

multistate <- nimbleCode({
...
 # probabilities of y(t) given z(t)
 omega[1,1] <- 1 - pB # Pr(alive B t -> non-detected t)
 omega[1,2] <- pB # Pr(alive B t -> detected B t)
 omega[1,3] <- 0 # Pr(alive B t -> detected NB t)
 omega[2,1] <- 1 - pNB # Pr(alive NB t -> non-detected t)
 omega[2,2] <- 0 # Pr(alive NB t -> detected B t)
 omega[2,3] <- pNB # Pr(alive NB t -> detected NB t)
 omega[3,1] <- 1 # Pr(dead t -> non-detected t)
 omega[3,2] <- 0 # Pr(dead t -> detected N t)
 omega[3,3] <- 0 # Pr(dead t -> detected NB t)
...

(ϕNB, ϕB, ψNBB, ψBNB, pNB, pB)

Our model

multistate <- nimbleCode({
...
 # likelihood
 for (i in 1:N){
 # latent state at first capture
 z[i,first[i]] <- y[i,first[i]] - 1
 for (t in (first[i]+1):K){
 # z(t) given z(t-1)
 z[i,t] ~ dcat(gamma[z[i,t-1],1:3])
 # y(t) given z(t)
 y[i,t] ~ dcat(omega[z[i,t],1:3])
 }
 }
})

(ϕNB, ϕB, ψNBB, ψBNB, pNB, pB)

 mean sd 2.5% 50% 97.5% Rhat n.eff
pB 0.60 0.03 0.54 0.59 0.66 1.00 202
pNB 0.57 0.03 0.51 0.57 0.62 1.01 281
phiB 0.80 0.02 0.77 0.80 0.83 1.01 313
phiNB 0.85 0.02 0.82 0.85 0.88 1.00 404
psiBNB 0.25 0.02 0.21 0.25 0.30 1.00 434
psiNBB 0.24 0.02 0.20 0.24 0.29 1.03 478

Multistate models are very �exible

Access to reproduction

Temporary emigration

Combination of life and dead encounters

Access to reproduction

Transition matrix:

First-year and second-year individuals breed with probabilities and .

Then, everybody breeds from age 3.

Γ =

⎛
⎜ ⎜ ⎜ ⎜ ⎜ ⎜
⎝

zt = J zt = 1yNB zt = 2yNB zt = B zt = D

0 ϕ1(1 − α1) 0 ϕ1α1 1 − ϕ1

0 0 ϕ2(1 − α2) ϕ2α2 1 − ϕ2

0 0 0 ϕ3 1 − ϕ3

0 0 0 ϕB 1 − ϕB

0 0 0 0 1

⎞
⎟ ⎟ ⎟ ⎟ ⎟ ⎟
⎠

zt−1 = J

zt−1 = 1yNB

zt−1 = 2yNB

zt−1 = B

zt−1 = D

α1 α2

Access to reproduction

Observation matrix:

Juveniles are never detected.

Ω =

⎛
⎜ ⎜ ⎜ ⎜ ⎜ ⎜
⎝

yt = 0 yt = 1 yt = 2 yt = 3

1 0 0 0

1 − p1 p1 0 0

1 − p2 0 p2 0

1 − p3 0 0 p3

1 0 0 0

⎞
⎟ ⎟ ⎟ ⎟ ⎟ ⎟
⎠

zt = J

zt = 1yNB

zt = 2yNB

zt = B

zt = D

Temporary emigration

Transition matrix:

Observation matrix:

Γ =
⎛
⎜
⎝

zt = in zt = out zt = D

ϕ(1 − ψin→out) ϕψin→out 1 − ϕ

ϕψout→in ϕ(1 − ψout→in) 1 − ϕ

0 0 1

⎞
⎟
⎠

zt−1 = in

zt−1 = out

zt−1 = D

Ω = (

yt = 0 yt = 1

1 − p p

1 0

1 0

⎞
⎟
⎠

zt = in

zt = out

zt = D

Combination of life and dead encounters

Transition matrix

Observation matrix

Γ =
⎛
⎜
⎝

zt = A zt = JD zt = D

s 1 − s 0

0 0 1

0 0 1

⎞
⎟
⎠

zt−1 = alive

zt−1 = just dead

zt−1 = dead for good

Ω =
⎛
⎜
⎝

yt = 0 yt = 1 yt = 2

1 − p 0 p

1 − r r 0

1 0 0

⎞
⎟
⎠

zt = A

zt = JD

zt = D

Issue of local minima
Simulated data

2 sites or states, and 7 occasions
Survival , detection
Transition
Transition

Courtesy of Jérôme Dupuis, used in Gimenez et al. (2005).

ϕ = 1 p = 0.6
ψ12 = 0.6
ψ21 = 0.85

https://oliviergimenez.github.io/pubs/Gimenezetal2005JABES.pdf

Data

2 0 2 1 2 0 2

2 0 2 1 2 0 2

2 0 2 1 2 0 2

2 0 2 1 2 0 2

1 1 1 0 1 0 1

1 1 1 0 1 0 1

1 1 1 0 1 0 1

1 1 1 0 1 0 1

V1 V2 V3 V4 V5 V6 V7

Further reading

Lebreton, J.-D., J. D. Nichols, R. J. Barker, R. Pradel and J. A. Spendelow (2009).
Modeling Individual Animal Histories with Multistate Capture–Recapture Models.
Advances in Ecological Research, 41:87-173.

https://multievent.sciencesconf.org/conference/multievent/pages/Lebretonetal2009AER.pdf

Live demo

Known knowns, unknown knowns and
unknowns: Uncertainty in state assignment

The team

last updated: 2021-05-18

Uncertainty in state assignment

Multievent models extend multistate models with uncertainty in state assignment

Breeding status in female roe deer is ascertained based on fawn detection

Sex status is ascertained based on morphological criteria in Audouin's gulls

Disease status in house �nches is ascertained based on birds' eyes examination

Hybrid status in wolves is ascertained based on genetics

Dominance status in wolves is ascertained based on heterogeneity in detection

We need to explicitly consider state assignment in a model

HMMs to the rescue!

Examples

Testing life-history trade-offs while accounting for uncertainty in breeding status

Quantifying disease dynamics while accounting for uncertainty in disease status

Estimating survival while accounting for individual heterogeneity in detection

Examples

Testing life-history trade-offs while accounting for uncertainty in breeding status

Quantifying disease dynamics while accounting for uncertainty in disease status

Estimating survival while accounting for individual heterogeneity in detection

Sooty shearwater (David Boyle)

Uncertainty in breeding status
3 states

breeding (B)
non-breeding (NB)
dead (D)

4 observations

not encountered (0)
found, ascertained as breeder (1)
found, ascertained as non-breeder (2)
found, status unknown (3)

How states generate observations

How states generate observations

How states generate observations

How states generate observations

How states generate observations

HMM model for breeding states with uncertainty

Vector of initial state probabilities

 is the probability that a newly encountered individual is a breeder

 is the probability that a newly encountered individual is a non-
breeder

δ = (

zt = B zt = NB zt = D

πB 1 − πB 0)

πB

πNB = 1 − πB

HMM model for breeding states with uncertainty

Transition matrix

 is breeder survival, that of non-breeders.

 is the probability for an individual breeding a year to be a non-breeder the next
year.

 is the probability for an non-breeder individual to breeder the next year.

Γ =
⎛
⎜
⎝

zt = B zt = NB zt = D

ϕB(1 − ψBNB) ϕBψBNB 1 − ϕB

ϕNBψNBB ϕNB(1 − ψNBB) 1 − ϕNB

0 0 1

⎞
⎟
⎠

zt−1 = B

zt−1 = NB

zt−1 = D

ϕB ϕNB

ψBNB

ψNBB

HMM model for breeding states with uncertainty

Observation matrix

 is the probability to assign an individual in state B to state B.

 is the probability to assign an individual in state NB to state NB.

 is the detection probability of breeders, that of non-breeders.

Ω =
⎛
⎜
⎝

yt = 0 yt = 1 yt = 2 yt = 3

1 − pB pBβB 0 pB(1 − βB)

1 − pNB 0 pNBβNB pNB(1 − βNB)

1 0 0 0

⎞
⎟
⎠

zt = B

zt = NB

zt = D

βB

βNB

pB pNB

HMM model for breeding states with uncertainty

Because animals are all captured, at �rst encounter:

Note: Breeding assessment is unaffected.

pB = pNB = 1

⎛
⎜
⎝

yt = 0 yt = 1 yt = 2 yt = 3

0 βB 0 (1 − βB)

0 0 βNB (1 − βNB)

1 0 0 0

⎞
⎟
⎠

zt = B

zt = NB

zt = D

Our model

multievent <- nimbleCode({
 # ---
 # Parameters:
 # phiB: survival probability state B
 # phiNB: survival probability state NB
 # psiBNB: transition probability from B to NB
 # psiNBB: transition probability from NB to B
 # pB: recapture probability B
 # pNB: recapture probability NB
 # piB prob. of being in initial state breeder
 # betaNB prob to ascertain the breeding status of an individual encountered as non-breeder
 # betaB prob to ascertain the breeding status of an individual encountered as breeder
 # ---
 # States (z):
 # 1 alive B
 # 2 alive NB
 # 3 dead
 # Observations (y):
 # 1 = non-detected
 # 2 = seen and ascertained as breeder
 # 3 = seen and ascertained as non-breeder
 # 4 = not ascertained
 # ---

(ϕB, ϕNB, ψBNB, ψNBB, pB, pNB, βB, βNB, π)

Our model

multievent <- nimbleCode({
...
 # Priors
 phiB ~ dunif(0, 1)
 phiNB ~ dunif(0, 1)
 psiBNB ~ dunif(0, 1)
 psiNBB ~ dunif(0, 1)
 pB ~ dunif(0, 1)
 pNB ~ dunif(0, 1)
 piB ~ dunif(0, 1)
 betaNB ~ dunif(0, 1)
 betaB ~ dunif(0, 1)
...

(ϕB, ϕNB, ψBNB, ψNBB, pB, pNB, βB, βNB, π)

Our model

multievent <- nimbleCode({
...
 # vector of initial stats probs
 delta[1] <- piB # prob. of being in initial state B
 delta[2] <- 1 - piB # prob. of being in initial state NB
 delta[3] <- 0 # prob. of being in initial state dead
...

(ϕB, ϕNB, ψBNB, ψNBB, pB, pNB, βB, βNB, π)

Our model

multievent <- nimbleCode({
...
 # probabilities of state z(t+1) given z(t)
 gamma[1,1] <- phiB * (1 - psiBNB)
 gamma[1,2] <- phiB * psiBNB
 gamma[1,3] <- 1 - phiB
 gamma[2,1] <- phiNB * psiNBB
 gamma[2,2] <- phiNB * (1 - psiNBB)
 gamma[2,3] <- 1 - phiNB
 gamma[3,1] <- 0
 gamma[3,2] <- 0
 gamma[3,3] <- 1
...

(ϕB, ϕNB, ψBNB, ψNBB, pB, pNB, βB, βNB, π)

Our model

multievent <- nimbleCode({
...
 # probabilities of y(t) given z(t)
 omega[1,1] <- 1 - pB # Pr(alive B t -> non-detected t)
 omega[1,2] <- pB * betaB # Pr(alive B t -> detected B t)
 omega[1,3] <- 0 # Pr(alive B t -> detected NB t)
 omega[1,4] <- pB * (1 - betaB) # Pr(alive B t -> detected U t)
 omega[2,1] <- 1 - pNB # Pr(alive NB t -> non-detected t)
 omega[2,2] <- 0 # Pr(alive NB t -> detected B t)
 omega[2,3] <- pNB * betaNB # Pr(alive NB t -> detected NB t)
 omega[2,4] <- pNB * (1 - betaNB) # Pr(alive NB t -> detected U t)
 omega[3,1] <- 1 # Pr(dead t -> non-detected t)
 omega[3,2] <- 0 # Pr(dead t -> detected N t)
 omega[3,3] <- 0 # Pr(dead t -> detected NB t)
 omega[3,4] <- 0 # Pr(dead t -> detected U t)
...

(ϕB, ϕNB, ψBNB, ψNBB, pB, pNB, βB, βNB, π)

Our model

multievent <- nimbleCode({
...
 # probabilities of y(first) given z(first)
 omega.init[1,1] <- 0 # Pr(alive B t = 1 -> non-detected t = 1)
 omega.init[1,2] <- betaB # Pr(alive B t = 1 -> detected B t = 1)
 omega.init[1,3] <- 0 # Pr(alive B t = 1 -> detected NB t = 1)
 omega.init[1,4] <- 1 - betaB # Pr(alive B t = 1 -> detected U t = 1)
 omega.init[2,1] <- 0 # Pr(alive NB t = 1 -> non-detected t = 1)
 omega.init[2,2] <- 0 # Pr(alive NB t = 1 -> detected B t = 1)
 omega.init[2,3] <- betaNB # Pr(alive NB t = 1 -> detected NB t = 1)
 omega.init[2,4] <- 1 - betaNB # Pr(alive NB t = 1 -> detected U t = 1)
 omega.init[3,1] <- 1 # Pr(dead t = 1 -> non-detected t = 1)
 omega.init[3,2] <- 0 # Pr(dead t = 1 -> detected N t = 1)
 omega.init[3,3] <- 0 # Pr(dead t = 1 -> detected NB t = 1)
 omega.init[3,4] <- 0 # Pr(dead t = 1 -> detected U t = 1)
...

(ϕB, ϕNB, ψBNB, ψNBB, pB, pNB, βB, βNB, π)

Our model

multievent <- nimbleCode({
...
 # likelihood
 for (i in 1:N){
 # latent state at first capture
 z[i,first[i]] ~ dcat(delta[1:3])
 y[i,first[i]] ~ dcat(omega.init[z[i,first[i]],1:4])
 for (t in (first[i]+1):K){
 # z(t) given z(t-1)
 z[i,t] ~ dcat(gamma[z[i,t-1],1:3])
 # y(t) given z(t)
 y[i,t] ~ dcat(omega[z[i,t],1:4])
 }
 }
})

(ϕB, ϕNB, ψBNB, ψNBB, pB, pNB, βB, βNB, π)

Results

 mean sd 2.5% 50% 97.5% Rhat n.eff
betaB 0.19 0.01 0.16 0.19 0.21 1.01 332
betaNB 0.76 0.05 0.66 0.76 0.86 1.01 65
pB 0.56 0.03 0.51 0.56 0.62 1.06 229
pNB 0.60 0.04 0.53 0.60 0.67 1.03 142
phiB 0.81 0.02 0.78 0.81 0.85 1.01 312
phiNB 0.84 0.02 0.80 0.84 0.87 1.00 354
piB 0.71 0.03 0.66 0.71 0.76 1.02 115
psiBNB 0.23 0.02 0.18 0.22 0.27 1.00 214
psiNBB 0.25 0.04 0.17 0.25 0.34 1.00 95

Breeders are dif�cult to assigned to the correct state.
Non-breeders are relatively well classi�ed as non-breeders.
No cost of breeding, neither on survival, nor on future reproduction.

Live demo

Examples

Testing life-history trade-offs while accounting for uncertainty in breeding status

Quantifying disease dynamics while accounting for uncertainty in disease status

Estimating survival while accounting for individual heterogeneity in detection

Animal epidemiology with uncertain disease states

We consider a system of an emerging pathogen Mycoplasma gallisepticum Edward and
Kanarek and its host the house �nch, Carpodacus mexicanus Müller.

A house �nch with a heavy infection (Jim Mondok).

Animal epidemiology with uncertain disease states

We consider a system of an emerging pathogen Mycoplasma gallisepticum Edward and
Kanarek and its host the house �nch, Carpodacus mexicanus Müller.

Faustino et al. (2004) and Conn & Cooch (2009) studied impact of pathogen on host
demographic rates.

Problem is true disease state for some encountered individuals is ambiguous because
seen at distance.

In this context, how to study the dynamics of the disease?

https://besjournals.onlinelibrary.wiley.com/doi/10.1111/j.0021-8790.2004.00840.x
https://besjournals.onlinelibrary.wiley.com/doi/full/10.1111/j.1365-2664.2008.01597.x

States and observations
3 states

healthy (H)
ill (I)
dead (D)

4 observations

not seen (0)
captured healthy (1)
captured ill (2)
health status unknown, i.e. seen at distance (3)

How states generate observations.

How states generate observations.

How states generate observations.

How states generate observations.

How states generate observations.

HMM model for disease states with uncertainty

Vector of initial state probabilities

 is the probability that a newly encountered individual is healthy.

 is the probability that a newly encountered individual is ill.

δ = (

zt = H zt = I zt = D

πH 1 − πH 0)

πH

πI = 1 − πH

HMM model for disease states with uncertainty

Transition matrix

 is the survival probability of healthy individuals, that of ill individuals.

 is the probability of getting sick, that of recovering from the disease.

Γ =
⎛
⎜
⎝

zt = H zt = I zt = D

ϕH(1 − ψHI) ϕHψHI 1 − ϕH

ϕIψIH ϕI(1 − ψIH) 1 − ϕI

0 0 1

⎞
⎟
⎠

zt−1 = H

zt−1 = I

zt−1 = D

ϕH ϕI

ψHI ψIH

HMM model for disease states with uncertainty

Transition matrix, incurable disease

No possibility of recovering from the disease, that is . Once you get sick, you
remain sick .

For analysing the house �nch data, we allow recovering from the disease, and we will
use transition matrix from previous slide.

Γ =
⎛
⎜
⎝

zt = H zt = I zt = D

ϕH(1 − ψHI) ϕHψHI 1 − ϕH

0 ϕI 1 − ϕI

0 0 1

⎞
⎟
⎠

zt−1 = H

zt−1 = I

zt−1 = D

ψIH = 0
ψII = 1 − ψIH = 1

HMM model for disease states with uncertainty

Observation matrix

 is the probability to assign a healthy individual to state H.

 is the probability to assign a sick individual to state I.

 is the detection probability of healthy individuals, that of sick individuals.

Ω =
⎛
⎜
⎝

yt = 0 yt = 1 yt = 2 yt = 3

1 − pH pHβH 0 pH(1 − βH)

1 − pI 0 pIβI pI(1 − βI)

1 0 0 0

⎞
⎟
⎠

zt = H

zt = I

zt = D

βH

βI

pH pI

Results

 mean sd 2.5% 50% 97.5% Rhat n.eff
betaH 0.99 0.01 0.97 0.99 1.00 1.01 1421
betaI 0.05 0.01 0.03 0.05 0.08 1.00 6477
pH 0.17 0.02 0.13 0.17 0.22 1.01 331
pI 0.58 0.10 0.41 0.57 0.80 1.04 220
phiH 0.88 0.02 0.84 0.88 0.92 1.01 360
phiI 0.99 0.01 0.96 0.99 1.00 1.00 1004
pi 0.96 0.01 0.93 0.96 0.98 1.00 4190
psiHI 0.22 0.04 0.16 0.22 0.32 1.02 311
psiIH 0.46 0.08 0.32 0.45 0.63 1.02 392

Healthy individuals are correctly assigned, while infected individuals are dif�cult to
ascertain.
Sounds like being infected has an effect on detection and survival. Run models
without effects and compare with WAIC for formal testing.
Infection rate is 22%, recovery rate is 46%.

Live demo

Examples

Testing life-history trade-offs while accounting for uncertainty in breeding status

Quantifying disease dynamics while accounting for uncertainty in disease status

Estimating survival while accounting for individual heterogeneity in detection

Individual heterogeneity with �nite mixtures.

Gray wolf is a social species with hierarchy in packs which may re�ect in species
demography.

Individual heterogeneity with �nite mixtures.

Gray wolf is a social species with hierarchy in packs which may re�ect in demography.

Shirley Pledger in a series of papers developed heterogeneity models in which
individuals are assigned in two or more classes with class-speci�c survival/detection
probabilities.

Cubaynes et al. (2010) used HMMs to account for heterogeneity in the detection
process due to social status, see also Pradel et al. (2009).

https://conbio.onlinelibrary.wiley.com/doi/abs/10.1111/j.1523-1739.2009.01431.x
https://link.springer.com/chapter/10.1007%2F978-0-387-78151-8_36

Individual heterogeneity
3 states

alive in class 1 (A1)
alive in class 2 (A2)
dead (D)

4 observations

not captured (0)
captured (1)

HMM model for individual heterogeneity

Vector of initial state probabilities

 is the probability of being alive in class 1.

 is the probability of being in class 2.

δ = (

zt = A1 zt = A2 zt = D

π 1 − π 0)

π

1 − π

HMM model for individual heterogeneity

Transition matrix

 is the survival probability, which could be made heterogeneous.

Γ =
⎛
⎜
⎝

zt = A1 zt = A2 zt = D

ϕ 0 1 − ϕ

0 ϕ 1 − ϕ

0 0 1

⎞
⎟
⎠

zt−1 = A1

zt−1 = A2

zt−1 = D

ϕ

HMM model for individual heterogeneity

Transition matrix, with change in heterogeneity class

 is the probability for an individual to change class of heterogeneity, from 1 to 2.

 is the probability for an individual to change class of heterogeneity, from 2 to 1.

Γ =
⎛
⎜
⎝

zt = A1 zt = A2 zt = D

ϕ(1 − ψ12) ϕψ12 1 − ϕ

ϕψ21 ϕ(1 − ψ21) 1 − ϕ

0 0 1

⎞
⎟
⎠

zt−1 = A1

zt−1 = A2

zt−1 = D

ψ12

ψ21

HMM model for individual heterogeneity

Observation matrix

 is detection for individuals in class 1, and that of individuals in class 2.

Ω =
⎛
⎜
⎝

yt = 0 yt = 1

1 − p1 p1

1 − p2 p2

1 0

⎞
⎟
⎠

zt = A1

zt = A2

zt = D

p1 p2

Results

 mean sd 2.5% 50% 97.5% Rhat n.eff
p1 0.38 0.09 0.23 0.38 0.56 1.04 210
p2 0.50 0.12 0.25 0.50 0.73 1.01 229
phi 0.81 0.05 0.71 0.81 0.91 1.04 317
pi 0.62 0.12 0.36 0.63 0.83 1.02 164

We have lowly detectable individuals (class A1 with) in proportion 62%.

And highly (or so) detectable individuals (class A2 with) in proportion 38%.

N ote that interpretation of classes is made a posteriori.

Survival is 81%.

p1

p2

HMM model for individual heterogeneity

You may consider more classes, and select among models, see Cubaynes et al. (2012).

You may also go for a non-parametric approach and let the data tell you how many
classes you need. This is relatively easy to do in Nimble, see Turek et al. (2021).

More about individual heterogeneity in Gimenez et al. (2018).

https://oliviergimenez.github.io/pubs/Cubaynesetal2011MEE.pdf
https://arxiv.org/abs/2007.10163
https://oliviergimenez.github.io/pubs/GimenezCamGaillard2017Oikos.pdf

HMMs to analyse capture-recapture data

With the same data, ask further questions, just consider different states.

How to make our models remember?

So far, the dynamics of the states are �rst-order Makovian.

The site where you will be depends only on the site where you are, and not on the
sites you were previously.

How to relax this assumption, and go second-order Markovian?

Memory models were initially proposed by Hestbeck et al. (1991) and Brownie et al.
(1993), then formulated as HMMs in Rouan et al. (2009). See also Cole et al. (2014).

https://esajournals.onlinelibrary.wiley.com/doi/abs/10.2307/2937193
https://www.jstor.org/stable/2532259?origin=crossref&seq=1#metadata_info_tab_contents
https://link.springer.com/article/10.1198/jabes.2009.06108
https://onlinelibrary.wiley.com/doi/10.1002/ece3.1037

Remember HMM model for dispersal between 2 sites

Transition matrix

Observation matrix

Γ =
⎛
⎜
⎝

zt = A zt = B zt = D

ϕA(1 − ψAB) ϕAψAB 1 − ϕA

ϕBψBA ϕB(1 − ψBA) 1 − ϕB

0 0 1

⎞
⎟
⎠

zt−1 = A

zt−1 = B

zt−1 = D

Ω =
⎛
⎜
⎝

yt = 0 yt = 1 yt = 2

1 − pA pA 0

1 − pB 0 pB

1 0 0

⎞
⎟
⎠

zt = A

zt = B

zt = D

HMM formulation of the memory model

To keep track of the sites previously visited, the trick is to consider states as being
pairs of sites occupied

States

AA is for alive in site A at and alive in site A at
AB is for alive in site A at and alive in site B at
BA is for alive in site B at and alive in site A at
BB is for alive in site B at and alive in site B at
D is for dead

Observations
0 not captured
1 captured at site A
2 captured at site B

t t − 1
t t − 1
t t − 1
t t − 1

HMM formulation of the memory model

Vector of initial state probabilities

where ,

and at site when �rst captured at and site at .

δ = (

zt = AA zt = AB zt = BA zt = BB zt = D

πAA πAB πBA πBB 0)

πBB = 1 − (πAA + πAB + πBA)

πij j t i t − 1

HMM formulation of the memory model

Transition matrix

 is probability to be in site at time for an individual present in site at

and in site at

Γ =

⎛
⎜ ⎜ ⎜ ⎜ ⎜ ⎜
⎝

zt = AA zt = AB zt = BA zt = BB zt = D

ϕAAA ϕAAB 0 0 1 − ϕAAA − ϕAAB

0 0 ϕABA ϕABB 1 − ϕABA − ϕABB

ϕBAA ϕBAB 0 0 1 − ϕBAA − ϕBAB

0 0 ϕBBA ϕBBB 1 − ϕBBA − ϕBBB

0 0 0 0 1

⎞
⎟ ⎟ ⎟ ⎟ ⎟ ⎟
⎠

zt = AA

zt = AB

zt = BA

zt = BB

zt = D

ϕijk k t + 1 j t

i t − 1

HMM formulation of the memory model

Transition matrix, alternate parameterization

 is the probability of surviving from one occasion to the next.

 is the probability an animal stays at the same site given that it was at site on

the previous occasion.

Γ =

⎛
⎜ ⎜ ⎜ ⎜ ⎜ ⎜
⎝

zt = AA zt = AB zt = BA zt = BB zt = D

ϕψAAA ϕ(1 − ψAAA) 0 0 1 − ϕ

0 0 ϕ(1 − ψABB) ϕψABB 1 − ϕ

ϕψBAA ϕ(1 − ψBAA) 0 0 1 − ϕ

0 0 ϕ(1 − ψBBB) ϕψBBB 1 − ϕ

0 0 0 0 1

⎞
⎟ ⎟ ⎟ ⎟ ⎟ ⎟
⎠

zt = AA

zt = AB

zt = BA

zt = BB

zt = D

ϕ

ψijj j i

HMM formulation of the memory model

Observation matrix

Ω =

⎛
⎜ ⎜ ⎜ ⎜ ⎜ ⎜
⎝

yt = 0 yt = 1 yt = 2

1 − pA pA 0

1 − pB 0 pB

1 − pA pA 0

1 − pB 0 pB

1 0 0

⎞
⎟ ⎟ ⎟ ⎟ ⎟ ⎟
⎠

zt = AA

zt = AB

zt = BA

zt = BB

zt = D

Further reading

Seminal paper by Pradel (2005) Multievent: An Extension of Multistate Capture–
Recapture Models to Uncertain States. Biometrics, 61: 442-447.

Dupuis (1995) had a similar idea for the Arnason-Schwarz model: Dupuis, J. (1995)
Bayesian estimation of movement and survival probabilities from capture-recapture
data. Biometrika. Vol. 82, pp 761-772.

See also for a review Gimenez et al. (2012) Estimating demographic parameters using
hidden process dynamic models. Theoretical Population Biology 82: 307-316.

https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1541-0420.2005.00318.x
https://academic.oup.com/biomet/article-abstract/82/4/761/252161
https://oliviergimenez.github.io/pubs/Gimenezetal2012TPB.pdf

Live demo

Skip your coffee break: Speed up MCMC
convergence

The team

last updated: 2021-05-12

Our nimble work�ow so far

But nimble gives full access to the MCMC engine

Steps to use NIMBLE at full capacity

1. Build the model. It is an R object.
2. Build the MCMC.
3. Compile the model and MCMC.
4. Run the MCMC.
5. Extract the samples.

nimbleMCMC does all of this at once.

Back to CJS models with Dipper data.

De�ne model

hmm.phip <- nimbleCode({
 delta[1] <- 1 # Pr(alive t = 1) = 1
 delta[2] <- 0 # Pr(dead t = 1) = 0
 phi ~ dunif(0, 1) # prior survival
 gamma[1,1] <- phi # Pr(alive t -> alive t+1)
 gamma[1,2] <- 1 - phi # Pr(alive t -> dead t+1)
 gamma[2,1] <- 0 # Pr(dead t -> alive t+1)
 gamma[2,2] <- 1 # Pr(dead t -> dead t+1)
 p ~ dunif(0, 1) # prior detection
 omega[1,1] <- 1 - p # Pr(alive t -> non-detected t)
 omega[1,2] <- p # Pr(alive t -> detected t)
 omega[2,1] <- 1 # Pr(dead t -> non-detected t)
 omega[2,2] <- 0 # Pr(dead t -> detected t)
 # likelihood
 for (i in 1:N){
 z[i,first[i]] ~ dcat(delta[1:2])
 for (j in (first[i]+1):T){
 z[i,j] ~ dcat(gamma[z[i,j-1], 1:2])
 y[i,j] ~ dcat(omega[z[i,j], 1:2])
 }
 }
})

Run and summarise

mcmc.phip <- nimbleMCMC(code = hmm.phip,
 constants = my.constants,
 data = my.data,
 inits = initial.values,
 monitors = parameters.to.save,
 niter = n.iter,
 nburnin = n.burnin,
 nchains = n.chains)

|-------------|-------------|-------------|-------------|
|---|
|-------------|-------------|-------------|-------------|
|---|

MCMCsummary(object = mcmc.phip, round = 2)

 mean sd 2.5% 50% 97.5% Rhat n.eff
p 0.90 0.03 0.83 0.90 0.95 1.00 286
phi 0.56 0.02 0.51 0.56 0.61 1.02 541

Detailed Nimble work�ow

1. Build the model (R object)

hmm.phip <- nimbleModel(code = hmm.phip,
 constants = my.constants,
 data = my.data,
 inits = initial.values())

defining model...

building model...

setting data and initial values...

running calculate on model (any error reports that follow may simply reflect missing values in model variabl
checking model sizes and dimensions...
model building finished.

2. Build the MCMC

phip.mcmc.configuration <- configureMCMC(hmm.phip)

===== Monitors =====
thin = 1: phi, p, z
===== Samplers =====
RW sampler (2)
 - phi
 - p
posterior_predictive sampler (39)
 - z[] (39 elements)
categorical sampler (1103)
 - z[] (1103 elements)

phip.mcmc <- buildMCMC(phip.mcmc.configuration)

3. Compile the model and MCMC

phip.model <- compileNimble(hmm.phip)

compiling... this may take a minute. Use 'showCompilerOutput = TRUE' to see C++ com

compilation finished.

c.phip.mcmc <- compileNimble(phip.mcmc, project = phip.model)

compiling... this may take a minute. Use 'showCompilerOutput = TRUE' to see C++ com
compilation finished.

4. Run the MCMC

samples <- runMCMC(c.phip.mcmc, niter = 1000)

running chain 1...

|-------------|-------------|-------------|-------------|
|---|

Alternative:
c.phip.mcmc$run(1000)
samples <- as.matrix(c.phip.mcmc$mvSamples)

5. Look at results

summary(samples[,"phi"])

 Min. 1st Qu. Median Mean 3rd Qu. Max.
 0.4236 0.5472 0.5687 0.5698 0.5795 0.7440

summary(samples[,"p"])

 Min. 1st Qu. Median Mean 3rd Qu. Max.
 0.5468 0.8803 0.8961 0.8771 0.9128 0.9686

Why is it useful?

Use and debug model in R

Makes your life easier when it comes to debugging

Inspect variables

hmm.phip$gamma

 [,1] [,2]
[1,] 0.4235601 0.5764399
[2,] 0.0000000 1.0000000

Calculate likelihood

hmm.phip$calculate()

[1] -1406.893

Example of debugging a model in R

Pretend an impossible state was given in inits, making a dead bird alive again.

[1] -Inf

c(phip.model$calculate("z[5,]"), # Bird 5 is valid.
 phip.model$calculate("z[6,]")) # Bird 6 isn't.

[1] -3.883928 -Inf

phip.model$z[6,] # We have found the problem

[1] 1 1 2 1 2 2 2

phip.model$calculate("z") # We can see there is a problem in z (states).

Open the hood, and change/modify/write samplers

Slice samplers instead of Metropolis-Hastings.

Samplers on a log scale, especially for a variance, standard deviation, or precision
parameter.

Blocking correlated parameters.

To know all samplers available in Nimble, type in help(samplers).

Source code for samplers and distributions is in R and can be copied and modi�ed.

Use compareMCMCs package to compare options (including Stan and Jags!).

https://github.com/nimble-dev/compareMCMCs

Consider a model with wing length and individual
random effect on survival.

hmm.phiwlrep <- nimbleCode({
 p ~ dunif(0, 1) # prior detection
 omega[1,1] <- 1 - p # Pr(alive t -> non-detected t)
 omega[1,2] <- p # Pr(alive t -> detected t)
 omega[2,1] <- 1 # Pr(dead t -> non-detected t)
 omega[2,2] <- 0 # Pr(dead t -> detected t)
 for (i in 1:N){
 logit(phi[i]) <- beta[1] + beta[2] * winglength[i] + eps[i]
 eps[i] ~ dnorm(mean = 0, sd = sdeps)
 gamma[1,1,i] <- phi[i] # Pr(alive t -> alive t+1)
 gamma[1,2,i] <- 1 - phi[i] # Pr(alive t -> dead t+1)
 gamma[2,1,i] <- 0 # Pr(dead t -> alive t+1)
 gamma[2,2,i] <- 1 # Pr(dead t -> dead t+1)
 }
 beta[1] ~ dnorm(mean = 0, sd = 1.5)
 beta[2] ~ dnorm(mean = 0, sd = 1.5)
 sdeps ~ dunif(0, 10)
 delta[1] <- 1 # Pr(alive t = 1) = 1
 delta[2] <- 0 # Pr(dead t = 1) = 0
 # likelihood
 for (i in 1:N){
 z[i,first[i]] ~ dcat(delta[1:2])
 for (j in (first[i]+1):T){
 z[i,j] ~ dcat(gamma[z[i,j-1], 1:2, i])
 y[i,j] ~ dcat(omega[z[i,j], 1:2])
 }
 }

Trace plot for standard deviation of the random effect
(default sampler)

Change samplers

Good sampling strategies depend on the model and data. What are the samplers used
by default?

mcmcConf <- configureMCMC(hmm.phiwlrep.m)

===== Monitors =====
thin = 1: p, beta, sdeps, z
===== Samplers =====
RW sampler (259)
 - p
 - beta[] (2 elements)
 - sdeps
 - eps[] (255 elements)
posterior_predictive sampler (78)
 - eps[] (39 elements)
 - z[] (39 elements)
categorical sampler (1103)
 - z[] (1103 elements)

Remove default sampler, and use slice sampler

mcmcConf$removeSamplers('sdeps')
mcmcConf$addSampler(target = 'sdeps',
 type = "slice")
mcmcConf

===== Monitors =====
thin = 1: p, beta, sdeps, z
===== Samplers =====
slice sampler (1)
 - sdeps
RW sampler (258)
 - p
 - beta[] (2 elements)
 - eps[] (255 elements)
posterior_predictive sampler (78)
 - eps[] (39 elements)
 - z[] (39 elements)
categorical sampler (1103)
 - z[] (1103 elements)

Trace plot for standard deviation of the random effect
(slice sampler)

Which is better?

MCMC ef�ciency depends on both mixing and computation time.

MCMC ef�ciency = Effective Sample Size (ESS) / computation time.

MCMC ef�ciency is the number of effectively independent posterior samples
generated per second.

ESS is different for each parameter. (Computation time is the same for each
parameter.)

ESS can be estimated from packages coda or mcmcse. These give statistical
estimates, so different runs will give different estimates.

Ef�ciency with default sampler = 25.7 / 21.53 = 1.19.

Ef�ciency with slice sampler = 19.24 / 19.39 = 0.99.

Block sampling

High correlation in (regression) parameters may make independent samplers
inef�cient.

Block sampling (propose candidate values from multivariate distribution) might help.

Block sampling

Remove and replace independent RW samples by block sampling. Then proceed as
usual.

mcmcConf$removeSamplers(c('beta[1]','beta[2]'))
mcmcConf$addSampler(target = c('beta[1]','beta[2]'),
 type = "RW_block")

Block sampling

mcmcConf

===== Monitors =====
thin = 1: p, beta, sdeps, z
===== Samplers =====
slice sampler (1)
 - sdeps
RW_block sampler (1)
 - beta[1], beta[2]
RW sampler (256)
 - p
 - eps[] (255 elements)
posterior_predictive sampler (78)
 - eps[] (39 elements)
 - z[] (39 elements)
categorical sampler (1103)
 - z[] (1103 elements)

Summary of strategies for improving MCMC

Choose better initial values.

Customize sampler choice (more in Chapter 7 of the User's manual).

Reparameterize, e.g. standardize covariates, deal with parameter redundancy.

Rewrite the model.

Vectorize to improve computational ef�ciency (not covered).
Avoid long chains of deterministic dependencies.
Marginalize to remove parameters
Use new functions and new distributions written as nimbleFunctions.

Write new samplers that take advantage of particular model structures (not covered).

Using multiple cores with parallelization: see how-to at https://r-
nimble.org/nimbleExamples/parallelizing_NIMBLE.html

https://r-nimble.org/html_manual/cha-mcmc.html
https://r-nimble.org/nimbleExamples/parallelizing_NIMBLE.html

Marginalization

User-de�ned distributions is another neat feature of Nimble.

Integrate over latent states if those are not the focus of ecological inference
(marginalization).

Marginalization often (but not always) improves MCMC. See Ponisio et al. 2020 for
examples.

The nimbleEcology package implements capture-recapture models and HMMs with
marginalization.

https://onlinelibrary.wiley.com/doi/full/10.1002/ece3.6053
https://cran.r-project.org/web/packages/nimbleEcology/vignettes/Introduction_to_nimbleEcology.html

Our model

multisite <- nimbleCode({
...
 # Likelihood
 for (i in 1:N){
 # Define latent state at first capture
 z[i,first[i]] <- y[i,first[i]] - 1
 for (t in (first[i]+1):K){
 # State process: draw S(t) given S(t-1)
 z[i,t] ~ dcat(gamma[z[i,t-1],1:3])
 # Observation process: draw O(t) given S(t)
 y[i,t] ~ dcat(omega[z[i,t],1:3])
 }
 }
})

(ϕA, ϕB, ψAB, ψBA, pA, pB)

Same model with nimbleEcology

This runs twice as fast as the standard formulation with explicit latent states.

Marginalizing typically gives better mixing.

multisite <- nimbleCode({
...
initial state probs
for(i in 1:N) {
 init[i, 1:4] <- gamma[y[i, first[i]] - 1, 1:4] # first state propagation
}

likelihood
for (i in 1:N){
 y[i,(first[i]+1):K] ~ dHMM(init = init[i,1:4], # count data from first[i] + 1
 probObs = omega[1:4,1:4], # observation matrix
 probTrans = gamma[1:4,1:4], # transition matrix
 len = K - first[i], # nb of occasions
 checkRowSums = 0) # do not check whether elements in a r
}
...

Reducing redundant calculations

So far, a row of the dataset is an individual. However, several individuals may share
the same encounter history.

The contribution of individuals with the same encounter history is the likelihood of
this particular encounter history raised to the power .

Using this so-called weighted likelihood greatly decreases the computational burden.

This idea is used in most computer programs that implement maximum likelihood. In
the Bayesian framework, the same idea was proposed in Turek et al. (2016).

Cannot be done in Jags. Can be done in nimble thanks to nimble functions!

The run is much faster. Also allows �tting models to big datasets. More details in
dedicated Worksheet.

M
M

https://doi.org/10.1007/s10651-016-0353-z

No live demo, but there is a worksheet.

Future directions for NIMBLE

NIMBLE is under active development. Contributors are welcome, including those
who want to get involved but don't know where.

Faster building of models and algorithms. Ability to save and re-load compiled work.

Automatic differentiation of model calculations, enabling Hamiltonian Monte Carlo,
other sampling strategies, and Laplace approximation.

Tools for building packages that use NIMBLE "under the hood".

Further reading

Turek, D., de Valpine, P. & Paciorek, C.J. Ef�cient Markov chain Monte Carlo sampling
for hierarchical hidden Markov models Environ Ecol Stat 23: 549–564 (2016).

Ponisio, L.C., de Valpine, P., Michaud, N., and Turek, D. One size does not �t all:
Customizing MCMC methods for hierarchical models using NIMBLE Ecol Evol. 10:
2385–2416 (2020).

Nimble workshop to come 26-28 May, check out here.

Nimble workshop material online available here.

Nimble manual and cheatsheet.

https://doi.org/10.1007/s10651-016-0353-z
https://doi.org/10.1002/ece3.6053
https://r-nimble.org/nimble-virtual-short-course-may-26-28
https://github.com/nimble-training
https://r-nimble.org/html_manual/cha-welcome-nimble.html
https://r-nimble.org/cheatsheets/NimbleCheatSheet.pdf

Conclusions
The team

last updated: 2021-05-15

Take-home messages and recommendations

Make the best of your data with HMMs

Here is a searchable list of HMM analyses of capture-recapture data.

This list is not exhaustive, please get in touch with us if you'd like to add a reference.

http://127.0.0.1:5667/applistHMM.html

Bayesian capture-recapture analysis with HMMs

Make your ecological question explicit.

Think of observations and states �rst.

Then write down the observation and transition matrices on paper.

Start simple, all parameters constant for example. Make sure convergence is reached.

Add complexity one step at a time.

Bayesian capture-recapture analysis with HMMs

Use simulations to better understand your model.

Nimble models can be used to simulate data, check out this tutorial.

Do not try to optimize your code. Make it work �rst, then think of optimization.

"Premature optimization is the root of all evil" - Donald Knuth (creator of TeX
and author of "The Art of Computer Programming")

Read Bayesian work�ow by Gelman et al. (2021).

https://r-nimble.org/nimbleExamples/simulation_from_model.html
https://stackify.com/premature-optimization-evil/
https://en.wikipedia.org/wiki/The_Art_of_Computer_Programming
https://arxiv.org/abs/2011.01808

Till next time

The Slack space will remain for some time. Happy to answer questions you might have
related to the workshop.

Website will be updated with

video recordings
your feedbacks
a FAQ section based on your questions

A book is on its way. More in 2022 hopefully.

