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How it all started

\ Olivier Gimenez y

™ @oaggimenez

¥ 157" ¥ Inference about animal demographic
parameters: Bayesian analysis of capture-
recapture data using Jags/Nimble. May 17-18,
2021. Remote workshop. Free of charge. Video-
recorded. %2

Registration is up and running bit.ly/2Migkyd
Details in the thread.

@ Olivier Gimenez @oaggimenez

7 e Anyone interested in a (remote) Bayesian workshop

on capture-recapture models (single/multistate, multievent
models) with Jags and Nimble, in April/May?

9:22 AM - Jan 29, 2021 ©)

QO 138 O 9 & Copy link to Tweet

Where we're at

Questions  Réponses @

This workshop is about animal demography. We will learn how to infer demographic parameters (e.g. survival,
recruitment, or dispersal). We will cover the analysis of capture-recapture data using single-site, multi-site, multi-
state and multi-event models. We will adopt a Bayesian approach and use Jags/Nimble for implementation.
Hopefully, you'll get what you need to go your own path.

This is a workshop for ecologists. No previous experience with Jags/Nimble, or Bayesian statistics, is assumed,
but knowledge of R is required.

The workshop is free of charge. Everything will be video-recorded.


https://twitter.com/oaggimenez?ref_src=twsrc%5Etfw%7Ctwcamp%5Etweetembed%7Ctwterm%5E1355068873746362368%7Ctwgr%5E%7Ctwcon%5Es1_&ref_url=http%3A%2F%2F127.0.0.1%3A7153%2F1_welcome.html1
https://twitter.com/oaggimenez?ref_src=twsrc%5Etfw%7Ctwcamp%5Etweetembed%7Ctwterm%5E1355068873746362368%7Ctwgr%5E%7Ctwcon%5Es1_&ref_url=http%3A%2F%2F127.0.0.1%3A7153%2F1_welcome.html1
https://twitter.com/oaggimenez/status/1355068873746362368?ref_src=twsrc%5Etfw%7Ctwcamp%5Etweetembed%7Ctwterm%5E1355068873746362368%7Ctwgr%5E%7Ctwcon%5Es1_&ref_url=http%3A%2F%2F127.0.0.1%3A7153%2F1_welcome.html1
https://t.co/wB94IWtBKY?amp=1
https://twitter.com/oaggimenez/status/1355068873746362368?ref_src=twsrc%5Etfw%7Ctwcamp%5Etweetembed%7Ctwterm%5E1355068873746362368%7Ctwgr%5E%7Ctwcon%5Es1_&ref_url=http%3A%2F%2F127.0.0.1%3A7153%2F1_welcome.html1
https://help.twitter.com/en/twitter-for-websites-ads-info-and-privacy
https://twitter.com/intent/like?ref_src=twsrc%5Etfw%7Ctwcamp%5Etweetembed%7Ctwterm%5E1355068873746362368%7Ctwgr%5E%7Ctwcon%5Es1_&ref_url=http%3A%2F%2F127.0.0.1%3A7153%2F1_welcome.html1&tweet_id=1355068873746362368
https://twitter.com/oaggimenez?ref_src=twsrc%5Etfw%7Ctwcamp%5Etweetembed%7Ctwterm%5E1355068873746362368%7Ctwgr%5E%7Ctwcon%5Es1_&ref_url=http%3A%2F%2F127.0.0.1%3A7153%2F1_welcome.html1

What this workshop is about

e Estimating demographic parameters with capture-recapture.
e Using a family of models called hidden Markov models (HMM).

e Within the Bayesian framework implemented with Markov chain Monte Carlo
methods (MCMCQC).



Credits and inspiration

e Past workshops on capture-recapture models w/ Roger Pradel, Rémi Choquet and
Jean-Dominique Lebreton.

e Past workshops on Bayesian analyses for population ecology with Ruth King, Steve
Brooks and Byron Morgan.

e Workshops on Nimble by Chris Paciorek, Daniel Turek and Perry de Valpine.
e Workshops on integrated population modeling with Michael Schaub and Marc Kéry.
e Books by Marc Kéry, Michael Schaub, Andy Royle and others — check out curated list.

e Daniel Turek's sabbatical in the team.


https://www.mbr-pwrc.usgs.gov/pubanalysis/roylebook/
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On our plate

Day 1

e Crash course on Bayesian statistics and MCMC algorithms

Free the modeler in you: Introduction to Nimble

What you see is not what you get: Hidden Markov models and capture-recapture
Dead or alive: Survival estimation

Day 2

On the move: Transition estimation

e Known knowns, unknown knowns and unknowns: Uncertainty in state assignment
Skip your coffee break: Speed up MCMC convergence

Take-home messages



Philosophy of teaching

e Lots of attendees, with huge heterogeneity in knowledge of capture-recapture
models, Bayesian methods, R and Nimble.

e |tisour hope that everyone will find something to take home.
e We've packed a lot of things in two days.
e We do not expect you to digest everything.

e All material (including videos) on website https://oliviergimenez.github.io/bayesian-
cr-workshop/.

e Feel free to play around with material while we walk through it, and afterwards.

e The workshop is organized in modules, each module is a combination of lectures and
live demos.


https://oliviergimenez.github.io/bayesian-cr-workshop/

The way we will interact with each other

e |ectures and live coding demos will happen in Zoom, same link for both days.
e Everythingis video recorded.

e Questions and answers via Slack, with a specific channel per module.



Crash course on Bayesian statistics and
MCMC algorithms

The team

last updated: 2021-05-11






Bayes' theorem

e Atheorem about conditional
probabilities.

Pr(A | B) Pr(B)
Pr(A)

e Pr(B|A) =

Bayes' theorem spelt out in blue neon at
the offices of Autonomy in Cambridge.
Source: Wikipedia



Bayes' theorem

e | always forget what the letters mean.

Might be easier to remember when written like this:

Pr(data | hypothesis) Pr(hypothesis)

Pr(hypothesis | data) = Pr(data)
r(data

The "hypothesis" is typically something unobserved or unknown. It's what you want
to learn about using the data.

e For regression models, the "hypothesis" is a parameter (intercept, slopes or error
terms).

Bayes theorem tells you the probability of the hypothesis given the data.



What is doing science after all?

How plausible is some hypothesis given the data?

Pr(data | hypothesis) Pr(hypothesis)

Pr(hypothesis | data) = Pr(data)
r(data



Why is Bayesian statistics not the default?

e Due to practical problems of implementing the Bayesian approach, and futile wars
between (male) statisticians, little progress was made for over two centuries.

e Recent advances in computational power coupled with the development of new
methodology have led to a great increase in the application of Bayesian methods
within the last two decades.



Frequentist versus Bayesian

e Typical stats problems involve estimating parameter 6 with available data.

e The frequentist approach (maximum likelihood estimation - MLE) assumes that the
parameters are fixed, but have unknown values to be estimated.

e Classical estimates are generally point estimates of the parameters of interest.

e The Bayesian approach assumes that the parameters are not fixed but have some
fixed unknown distribution - a distribution for the parameter.



What is the Bayesian approach?

e The approach is based upon the idea that the experimenter begins with some prior
beliefs about the system.

e And then updates these beliefs on the basis of observed data.

e This updating procedure is based upon the Bayes' Theorem:

Pr(B | A) Pr(A)

Pr(A| B) = Pr(B)




What is the Bayesian approach?

e Schematicallyif A = 8 and B = data, then

e The Bayes' theorem

Pr(B | A) Pr(A)

Pr(A | B) = Pr(B)

e Translates into:

Pr(9 | data) — Lridata | 6) Pr(9)

Pr(data)



Bayes' theorem

Pr(0 | data) = L1 data | 6) Pr(6)

e Posterior distribution: Represents what you know after having seen the data. The
basis for inference, a distribution, possibly multivariate if more than one parameter.

e Likelihood: This quantity is the same as in the MLE approach.

e Prior distribution: Represents what you know before seeing the data. The source
of much discussion about the Bayesian approach.

. is a V-dimensional integral if @ = 64, ..., 0.

e Difficult if not impossible to calculate. This is one of the reasons why we need
simulation (MCMC) methods.



Brute force via numerical integration

e Say we release n animals at the beginning of the winter, out of which y survive, and
we'd like to estimate winter survival 6.

y <- 19
n <- 57

e Our model:

y ~ Binomial(n, 0) likelihood|
6 ~ Beta(1,1) [prior for 6]



Beta prior
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Apply Bayes theorem
e Likelihood times the prior: Pr(data | 8) Pr(0)

numerator <- function(p) dbinom(y,n,p) * dbeta(p,a,b)
e Averaged likelihood: Pr(data) = [ L(6 | data) Pr(0)df

denominator <- integrate(numerator,®,1)Svalue



Posterior via numerical integration

posterior

0.00 0.25 0.50 0.75 1.00



Superimpose explicit posterior

N

posterior

N

0.00 0.25 0.50 0.75 1.00



And the prior

N

posterior

N

0.00 0.25 0.50 0.75 1.00



What if multiple parameters?

e Example of alinear regression with parameters «, 8 and o to be estimated.

e Bayes'theorem says:

P(data | o, B,0) P(e, B, 0)
fff P(data‘ ‘ a, B, 0) P(Oé,ﬂ, 0') da df do

e Do we really wish to calculate a 3D integral?

P(a, 8,0 | data) =




Bayesian computation

e |ntheearly 1990s, statisticians rediscovered work from the 1950's in physics.

THE JOURNAL OF CHEMICAL PHYSICS VOLUME 21, NUMBER &6 JUNE, 1953

Equation of State Calculations by Fast Computing Machines

Nicuoras METrOPOLIS, ARIANNA W. ROseENBLUTH, MaRrsHALL N. RosEnBLUTH, AND AucusTA H. TELLER,
Los Alamos Scientific Laboratory, Los Alamos, New Mexico

AND

Epwarp TELLER,* Department of Physics, University of Chicage, Chicago, Illinois
- (Received March 6, 1953)

A general method, suitable for fast computing machines, for investigating such properties as equations of
state for substances consisting of interacting individual molecules is described. The method consists of a
modified Monte Carlo integration over configuration space. Results for the two-dimensional rigid-sphere
system have been obtained on the Los Alamos MANTAC and are presented here. These results are compared
to the free volume equation of state and to a four-term virial coefficient expansion.



Bayesian computation

e |ntheearly 1990s, statisticians rediscovered work from the 1950's in physics.

e Use stochastic simulation to draw samples from posterior distributions.

Avoid explicit calculation of integrals in Bayes formula.

¢ |nstead, approx. posterior w/ some precision by drawing large samples.

Markov chain Monte Carlo (MCMC) gives a boost to Bayesian statistics!
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Why are MCMC methods so useful?

e MCMC are stochastic algorithms to produce sequence of dependent random
numbers from a Markov chain.

e A Markov chain is a discrete sequence of states, in which the probability of an event
depends only on the state in the previous event.

e A Markov chain has an equilibrium (aka stationary) distribution.
e Equilibrium distribution is the desired posterior distribution!
e Several ways of constructing these chains: e.g., Metropolis-Hastings, Gibbs sampler.

e How to implement them in practice?!



The Metropolis algorithm

e Let's go back to animal survival estimation.
e We illustrate sampling from the posterior distribution.

e We write functions in R for the likelihood, the prior and the posterior.



# survival data, 19 "success" out of 57 "attempts”
survived <- 19
released <- 57

# log-likelihood function
loglikelihood <- function(x, p){
dbinom(x = x, size = released, prob = p, log = TRUE)

}

# prior density
logprior <- function(p){

dunif(x = p, min = @, max = 1, log = TRUE)
b

# posterior density function (log scale)
posterior <- function(x, p){

loglikelihood(x, p) + logprior(p) # - log(Pr(data))
}



Metropolis algorithm

1. We start at any possible value of the parameter to be estimated.

2. To decide where to visit next, we propose to move away from the current value of the
parameter — this is a candidate value. To do so, we add to the current value some
random value from say a normal distribution with some variance.

3. We compute the ratio of the probabilities at the candidate and current locations
R = posterior(candidate) /posterior(current). This is where the magic of MCMC

happens, in that Pr(data), the denominator of the Bayes theorem, cancels out.

4. We spin a continuous spinner that lands anywhere from O to 1 — call it the random
spin X. If X is smaller than R, we move to the candidate location, otherwise we

remain at the current location.

5. We repeat 2-4 a number of times — or steps (many steps).



# propose candidate value

move <- function(x, away = .2){
logitx <- log(x / (1 - x))
logit_candidate <- logitx + rnorm(1, 6, away)
candidate <- plogis(logit_candidate)
return(candidate)

}

# set up the scene

steps <- 100

theta.post <- rep(NA, steps)
set.seed(1234)

# pick starting value (step 1)
inits <- 0.5
theta.post[1] <- inits



for (t in 2:steps){ # repeat steps 2-4 (step 5)

# propose candidate value for prob of success (step 2)
theta_star <- move(theta.post[t-1])

# calculate ratio R (step 3)

pstar <- posterior(survived, p = theta_star)
pprev <- posterior(survived, p = theta.post[t-1])
logR <- pstar - pprev

R <- exp(logR)

# decide to accept candidate value or to keep current value (:
accept <- rbinom(1, 1, prob = min(R, 1))
theta.post[t] <- ifelse(accept == 1, theta_star, theta.post[t-



Starting at the value 0.5 and running the algorithm for 100 iterations.
head(theta.post)

[1] ©0.5000000 0.4399381 ©.4399381 0.4577124 0.4577124 6.4577124
tail(theta.post)

[1] ©.4145878 06.3772087 ©.3772087 0.3860516 0.3898536 0.3624450
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Another chain
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With 5000 steps
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In yellow: posterior mean; in red: maximum likelihood estimate.



Animating MCMC - 1D example (code here)
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https://gist.github.com/oliviergimenez/5ee33af9c8d947b72a39ed1764040bf3

Animating MCMC - 2D example (code here)


https://mbjoseph.github.io/posts/2018-12-25-animating-the-metropolis-algorithm/

The MCMC Interactive Gallery (more here)

The Markov-chain Monte Carlo Interactive Gallery

Click on an algorithm below to view interactive demo:

e Random Walk Metropolis Hastings

o Adaptive Metropolis Hastings [1]

o Hamiltonian Monte Carlo [2]

¢ No-U-Turn Sampler [2]

e Metropolis-adjusted Langevin Algorithm (MALA) [3]
e Hessian-Hamiltonian Monte Carlo (H2MC) [4]

e Gibbs Sampling

e Stein Variational Gradient Descent (SVGD) [5]

e Nested Sampling with RadFriends (RadFriends-NS) [6]
o Differential Evolution Metropolis (Z) [7]

View the source code on github: https://github.com/chi-feng/mcmc-demo.


https://chi-feng.github.io/mcmc-demo/

Assessing convergence

e MCMC algorithms can be used to construct a Markov chain with a given stationary
distribution (set to be the posterior distribution).

e For the MCMC algorithm, the posterior distribution is only needed to be known up to
proportionality.

e Once the stationary distribution is reached, we can regard the realisations of the
chain as a (dependent) sample from the posterior distribution (and obtain Monte
Carlo estimates).

e We consider some important implementation issues.
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How do good chains behave?

e Converge to same target distribution; discard some realisations of Markov chain
before convergence is achieved.

e Once there, explore efficiently: The post-convergence sample size required for
suitable numerical summaries.

e Therefore, we are looking to determine how long it takes for the Markov chain to
converge to the stationary distribution.

e |n practice, we must discard observations from the start of the chain and just use
observations from the chain once it has converged.

e Theinitial observations that we discard are referred to as the burn-in.

e Simplest method to determine length of burn-in period is to look at trace plots.



Burn-in
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Effective sample size n.eff

e How long of a chain is needed to produce stable estimates ?
e Most MCMC chains are strongly autocorrelated.

e Successive steps are near each other, and are not independent.

The effective sample size (n . eff) measures chain length while taking into account
the autocorrelation of the chain.

o n.effislessthan the number of MCMC iterations.
o Check the n.eff of every parameter of interest.
o Check the n.eff of any interesting parameter combinations.

We need n.eff > 100 independent steps.



Potential scale reduction factor

e Gelman-Rubin statistic ]%

e Measures the ratio of the total variability combining multiple chains (between-chain
plus within-chain) to the within-chain variability.

e Asks the question is there a chain effect? Very much alike the F’ test in an ANOVA.
e Values near 1 indicates likely convergence, a value of < 1.1 is considered acceptable.

e Necessary condition, not sufficient; In other words, these diagnostics cannot tell you
that you have converged for sure, only that you have not.



To sum up

e Run multiple chains from arbitrary starting places (initial values).
e Assume convergence when all chains reach same regime
e Discard initial burn-in phase.

e Proceed with posterior inference.

Use traceplot, effective sample size and R.



What if you have issues of convergence?

¢ |ncrease burn-in, sample more.

Use more informative priors.

Pick better initial values (good guess), using e.g. estimates from simpler models.

e Reparameterize:
o Standardize covariates.
o Non-centering: a ~ N (0, o) becomes a = zo withz ~ N(0, 1).

Something wrong with your model?
o Start with a simpler model (remove complexities).
o Use simulations.

e Change your sampler. More later on.



Further reading

e McCarthy, M. (2007). Bayesian Methods for Ecology. Cambridge: Cambridge
University Press.

e McElreath, R. (2020). Statistical Rethinking: A Bayesian Course with Examplesin R
and Stan (2nd ed.). CRC Press.

e Gelman, A. and Hill, J. (2006). Data Analysis Using Regression and
Multilevel/Hierarchical Models (Analytical Methods for Social Research). Cambridge:

Cambridge University Press.


https://www.cambridge.org/core/books/bayesian-methods-for-ecology/9225F65B8A25D69B0B6C50B5A9A78201
https://xcelab.net/rm/statistical-rethinking/
https://www.cambridge.org/core/books/data-analysis-using-regression-and-multilevelhierarchical-models/32A29531C7FD730C3A68951A17C9D983

Live demo




‘Free the modeler in you': Intro to Nimble

The team (citation by Marc Kéry)

last updated: 2021-05-17



What is Nimble?

B ko v w——

THIS ISRSTUDIO

. Rob Robinson
@btorobrob

#rstats particularly the JAGS one, some of those who
have ventured into that shadowy place have not
returned... but rather pushed on through to the
paradise that is @R_nimble or so the legends go...

But what's that Thanks @Todd W Arnold for the smile

shadowy place over there?

jTHATS 1ncsi 8

(Meme created by Todd Arnold's wonderful students)



What is Nimble?

e Numerical Inference for statistical Models using Bayesian and Likelihood Estimation.
e A framework for hierarchical statistical models and algorithms.
e Uses almost the same model code as WinBUGS, OpenBUGS, and JAGS.

¢ An extension of the BUGS language: additional syntax, custom functions and
distributions.

e A configurable system for MCMC.

e Alibrary of other methods (SMC, MCEM).

e A model-generic programming system to write new analysis methods.



Load nimble package

library(nimble)



Build model, made of likelihood and priors

naive.survival.model <- nimbleCode ({
phi ~ dunif(0, 1)

y ~ dbinom(phi, n)
})



Syntax: what's new/better/different?

e Vectorization

for(t in 1:Tmax) {
x[t] <- Mu.x + epsilon[t]

}

X[1:Tmax] <- Mu.x + epsilon[1:Tmax]



Syntax: what's new/better/different?

e More flexible specification of distributions

for(t in 1:Tmax) {
epsilon[t] ~ dnorm(6, tau)

;
tau <- pow(sigma, -2)
sigma ~ dunif(@, 5)

for(t in 1:Tmax) {
epsilon[t] ~ dnorm(6, sd = sigma)

}
sigma ~ dunif(@, 5)



Syntax: what's new/better/different?

e Your own functions and distributions

x[1:Tmax] <- myNimbleFunction(a Mu.x, b = epsilon[1:Tmax])

sigma ~ dCustomDistr(c = 0.5, z = 10)



Syntax: what's new/better/different?

e The end of empty indices

sum.Xx <- sum(x[])

sum.Xx <- sum(x[1:Tmax])

e & more...



Read in data

Back to our naive survival model:

naive.survival.model <- nimbleCode ({
phi ~ dunif(@, 1)

y ~ dbinom(phi, n)
})

my.data <- list(n = 57, y = 19)



Distinguish constants and data

To Nimble, not all "data" is data...

my.constants <- list(n = 57)
my.data <- list(y = 19)

Constants:

e Cannever be changed
e Must be provided when a model is defined (part of the model structure)
e E.g.vector of known index values, variables used to define for-loops, etc.



Distinguish constants and data
To Nimble, not all "data" is data...

my.constants <- list(n = 57)
my.data <- list(y = 19)

Data:

e Canbe changed without re-building the model
e Can be (re-)simulated within a model
e E.g. stuffthat only appears to the left of a "~"

For computational efficiency, better to specify as much as possible as constants.

Nimble will help you with this!



Specify initial values

initial.values <- function() list(phi = runif(1,0,1))

initial.values()

Sphi
[1] ©.9287372



Which parameters to save?

parameters.to.save <- c("phi")



MCMC details

.1ter <- 5000
.burnin <- 1000
.chains <- 2
.thin <- 1

> 35 O O

Number of posterior samples per chain:

n.iter — n. burnin

n. posterior =
P n.thin



Run model, tadaal!

mcmc.output <- nimbleMCMC(code = naive.survival.model,
data = my.data,
constants = my.constants,
inits = initial.values,
monitors = parameters.to.save,
thin = n.thin,
niter = n.iter,
nburnin = n.burnin,
nchains = n.chains)



Explore MCMC outputs

str(mcmc.output)

List of 2

S chain1: num [1:4000, 1] 0.406 0.43 0.264 0.264 0.297 ...

..— attr(*, "dimnames")=List of 2
..$ : NULL
..S : chr "phi”

$ chain2: num [1:4000, 1] 0.274 0.274 06.389 0.389 0.389 ...

..— attr(*, "dimnames")=List of 2
..S : NULL
..S : chr "phi”



Explore MCMC outputs

head(mcmc.outputSchaini)

phi
.4057891
.4297459
.2644534
.2644534
.2971877
.2971877

OO OO0




Explore MCMC outputs
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Numerical summaries

library(MCMCvis)
MCMCsummary (mcmc.output, round = 2)

mean sd 2.5% 506% 97.5% Rhat n.eff
phi 6.34 0.06 0.23 0.34 0.47 1 1793



Trace and posterior density

MCMCtrace(mcmc.output,
pdf = FALSE)

0.4
| 1 1 |

0.2

Trace - phi

T
0

I I I I
1000 2000 3000 4000

Iteration

sity

0 2 4 6

Density - phi

02 03 04 05

Parameter estimate




Trace and posterior density

MCMCtrace(mcmc.output, roceom N
pdf = FALSE, ] e
ind = TRUE, 53 5 qnete
Rhat = TRUE, 8.
o8 = TMRUE) s

Iteration Parameter estimate



Our nimb1le workflow so far

Model written in R model If using only defaults:
BUGS language, imbleModel o ~ nimbleMCMC()
data, —> nimpolelvioae () similar behavior as jags() from R2jags package
inits, constants Object containing the model, data,

constants, and initial conditions

Samples

Adapted from L. Ponisio



But nimb1le gives full access to the MCMC engine

Model written in R model If using only defaults:
BUGS language, imbleModel o ~ nimbleMCMC()
data, —> nimpleiviode () similar behavior as jags() from R2jags package
inits, constants Object containing the model, data,

constants, and initial conditions

i Can skip configuration step
if using defaults

MCMC configuration
Monitors,
Thinning, = configureMCMC()

Sampler choices
Add/remove samplers and customize MCMC

specifications, or use defaults

'

Single chain:

Uncompiled MCMC Compiled MCMC & run method ($run(niter))

_— Samples

1 or more chains:
runMCMC()

buildMCMC() model

compileNimble()

burnin
nchains

Credit: L. Ponisio






Useful resources

Official website https://r-nimble.org

e User Manual https://r-nimble.org/html_manual/cha-welcome-nimble.html and
cheatsheet.

e Users mailing list https://groups.google.com/forum/#!forum/nimble-users
e Training material https://github.com/nimble-training
e Reference to cite when using nimble in a publication:

de Valpine, P, D. Turek, C. J. Paciorek, C. Anderson-Bergman, D. Temple Lang,
and R. Bodik (2017). Programming With Models: Writing Statistical Algorithms
for General Model Structures With NIMBLE. Journal of Computational and
Graphical Statistics 26 (2): 403-13.


https://r-nimble.org/
https://r-nimble.org/html_manual/cha-welcome-nimble.html
https://r-nimble.org/cheatsheets/NimbleCheatSheet.pdf
https://groups.google.com/forum/#!forum/nimble-users
https://github.com/nimble-training
https://arxiv.org/pdf/1505.05093.pdf
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What you see is not what you get: Hidden
Markov models and capture-recapture data

The team

last updated: 2021-05-18



Back to our survival example

e We have z survivors out of n released animals with winter survival probability ¢

Our model so far:

z ~ Binomial(n, ¢) likelihood]
¢ ~ Beta(1,1) [prior for ¢|

e Thisis also:

z; ~ Bernoulli(¢), i =1,...,N likelihood]
¢ ~ Beta(1,1) [prior for ¢]

What if we had several winters? Say T’ = 5 winters.



Longitudinal data

e 2;+ = lifindividualz alive at winter ¢, and z; ; = 2 if dead.

id winter 1 winter 2 winter 3 winter 4 winter 5
1 1 2 2 2

00 N O U D WODN
T T T N = Yy =N
R R, NN R R R
R R, NN DN DN
R R, N N DN DNNDN
N P N NN DN NN DD



A model for longitudinal survival data

e A model relies on assumptions.

The state of an animal at a given winter, alive or dead, is only dependent on its state
the winter before.

The future depends only on the present, not the past: Markov process.
e If an animalis alive in a given winter, the probability it survives to the next winter is ¢.
e The probability it diesis 1 — ¢.

e |f ananimalis dead a winter, it remains dead, unless you believe in zombies.



Markov process

0 ©O0O60Oed



Markov process

OO0



Transition matrix

e The core of the Markov process is made of the transition probabilities.

e For example, the probability of transitioning from state alive at £ — 1 to state alive at
tisPr(z; = 1|21 = 1) = ~1,1. Itis the survival probability ¢.

e The probability of dying over the interval (t — 1, t) is
Pr(z; =2z 1=1) =m2=1—¢.

e Now ifananimalisdeadatt — 1,then Pr(z; = 1|2;_; = 2) = 0and
Pr(z; = 2|z, 1 =2) =1

e These probabilities can be packed in a transition matrix I':

r_ (71,1 71,2) B (¢ 1—¢)
Y21 V2,2 0 1



Transition matrix:



Initial states

A Markov process has to start somewhere.

We need the probabilities of initial states, i.e. statesatt = 1.

Wewilluse § = (Pr(z; = 1),Pr(z; = 2)).

Here we assume that all animals are alive at first winter, i.e. Pr(z; = 1) = 1 and
Pr(z; =2) =0.



Likelihood

Pr(z) = Pr(zr, 20 1,279, ., 21)



Likelihood

Pr(z) = Pr(zr, 20 1,279, ., 21)

= Pr(zr|zr_1,20-2,...,21) Pr(2r_1, 2r-2,. .., 21)



Likelihood

Pr(z) = Pr(zr, 20 1,279, ., 21)
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= Pr(zr|zr_1) Pr(2r-1, 212, ...,21)
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Likelihood

Pr(z) = Pr(zr, 20 1,279, ., 21)
= Pr(zr|zp_1,27-9,...,21) Pr(zr_1,21_9,.. ., 21)
= Pr(zp|zr_1) Pr(zpr_1,20_9,...,21)
= Pr(zr|zr_1) Pr(zp_1|27_9,...,21) Pr(2p_9,..., 21)
= Pr(zr|zr_1) Pr(zr_1|21_9) Pr(zr_9, ..., 21)




Likelihood

Pr(z) = Pr(zr, 20 1,279, ., 21)
Pr(zr|zr_1,2r—9,...,21) Pr(zp_1, 209, ..., 21)
= Pr(zp|zr_1) Pr(zpr_1,20_9,...,21)
Pr(zr|zr_1) Pr(zr_1|z7_9,-..,21) Pr(2r_o, ..., 21)
(zr|zr_1) Pr(zr_1|21_9) Pr(2zr_2, ..., 21)




Example

e Let's assume an animalis alive, alive then dies.

e Wehavez = (1,1, 2). What is the contribution of this animal to the likelihood?

PI‘(Z — (17 1, 2)) — PI‘(Z1 — 1) Vei=1,20=1 Vzo=1,23=2
=1¢(1-¢).

r_ (’71,1 71,2) B (cb l—qb)
Y21 V2,2 0 1

e Remember:



Our mode]

21 ~ Multinomial(1, §) likelihood, t = 1]



Our mode]

21 ~ Multinomial(1, §) likelihood, t = 1]

¢ ~ Beta(1,1) [prior for ¢|



Our mode]

21 ~ Multinomial(1, §) likelihood, ¢ = 1]
2¢|2:—1 ~ Multinomial(1,,, | .,) likelihood, t > 1
¢ ~ Beta(1,1) [prior for ¢




Our mode]

21 ~ Multinomial(1, §) likelihood, ¢ = 1]
2¢|2:—1 ~ Multinomial(1,,, | .,) likelihood, t > 1
¢ ~ Beta(1,1) [prior for ¢

(00
0 1

Yar1=1,2s — (¢7 1— ¢)



Our mode]

21 ~ Multinomial(1, §) likelihood, ¢ = 1]
2¢|2:—1 ~ Multinomial(1,,, | .,) likelihood, t > 1
¢ ~ Beta(1,1) [prior for ¢

(0
0 1

’th_1:2,zt — (07 1)



Nimble implementation

e In Nimble, we will use the categorical distribution dcat ().

e The categorical distribution is a multinomial distribution with a single draw.

nimble: :rcat(n

20, prob = c(0.1, 0.3, 0.6))
## [1] 13 233322313323332233

nimble::rcat(n

20, prob = c(0.1, 0.1, 0.4, 0.2, 0.2))

## [1]1 35235223125331411333



Nimble code

markov.survival <- nimbleCode( {
phi ~ dunif(@, 1) # prior

gamma[1,1] <- phi
gamma[1,2] <- 1 - phi
gamma[2,1] <- ©
gamma[2,2] <- 1
delta[1] <- 1
delta[2] <- ©

# likelihood

for (i in 1:N){

# Pr(alive t -> alive t+17)
# Pr(alive t -> dead t+17)
# Pr(dead t -> alive t+17)
# Pr(dead t -> dead t+1)
# Pr(alive t = 1) =1

# Pr(dead t = 1) = 0

z[i,1] ~ dcat(delta[1:2])

for (j in 2:T){

z[i,j] ~ dcat(gamma[z[i,j-1], 1:2])

}
1Y)
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Nimble code

markov.survival <- nimbleCode( {
phi ~ dunif(@, 1) # prior

gamma[1,1] <- phi
gamma[1,2] <- 1 - phi
gamma[2,1] <- ©
gamma[2,2] <- 1
delta[1] <- 1
delta[2] <- ©

# likelihood

for (i in T:N){

# Pr(alive t -> alive t+17)
# Pr(alive t -> dead t+17)
# Pr(dead t -> alive t+17)
# Pr(dead t -> dead t+1)
# Pr(alive t = 1) =1

# Pr(dead t = 1) = 0

z[i,1] ~ dcat(delta[1:2])

for (j in 2:T){

z[i,j] ~ dcat(gamma[z[i,j-1], 1:2])

}
}
})



Nimble code
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Nimble code

markov.survival <- nimbleCode( {
phi ~ dunif(@, 1) # prior

gamma[1,1] <- phi
gamma[1,2] <- 1 - phi
gamma[2,1] <- ©
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z[i,j] ~ dcat(gamma[z[i,j-1], 1:2])

}
1Y)



Note

e Vector ¢ is used as a placeholder for more complex models to come in Class 7.

e Here,youcouldwritez[i,1] <- 1.



Nimble awesomness

You should be able to define vectors and matrices like you do in R.

markov.survival <- nimbleCode( {
phi ~ dunif(9, 1)
gammal[1:2,1:2] <- matrix( c(phi, 6, 1 - phi, 1), nrow = 2)
delta[1:2] <- c(1, @)

for (i in T:N){
z[i,1] ~ dcat(delta[1:2])
for (j in 2:7){
z[i,j] ~ dcat(gamma[z[i, j-1], 1:2])
}
)



Converting to Nimble from Jags, OpenBUGS or WinBUGS

e Main difference is that Nimble does not guess.

We need to specify dimensions of vectors and matrices.

You cannot write x[ ] or x[1i, ]. Just provide indexranges x[1:n] or x[1i, 1:m].

e More tips here.


https://r-nimble.org/quick-guide-for-converting-from-jags-or-bugs-to-nimble

Constants and data

my.constants <- list(N = 57,
my.constants

## SN

## [1] 57
#it

## ST

## [1] 5

my.data <- list(z = z)



Initial values

initial.values <- function() list(phi = runif(1,0,1))
initial.values()

## Sphi
## [1] 0.4695068



Parameters to monitor

parameters.to.save <- c("phi")
parameters.to.save

## [1] "phi"



MCMC details

n.iter <- 5000
n.burnin <- 1000
n.chains <- 2



Run Nimble

mcmc.output <- nimbleMCMC(code = markov.survival,

constant

S

= my.constants,

data = my.data,
initial.values,

1nits =
monitors
niter =
nburnin
nchains

n

= parameters.to.save,
.1ter,

n.burnin,

n.chains)



Posterior distribution of survival

library(MCMCvis)
MCMCsummary (mcmc.output, round = 2)

## mean sd 2.5% 50% 97.5% Rhat n.eff
## phi 0.76 .63 ©.7 0.77 ©0.83 1T 1848

e Posterior mean and median are close to 0.8.

e Cool! The data was simulated, with (true) survival ¢ = 0.8.



Live demo




Unfortunately, this is the data we wish we had.



In real life

e Animals cannot be monitored exhaustively, like humans in a medical trial.
e Animals are captured, marked or identified then released alive.
e Then, these animals may be detected again, or go undetected — capture-recapture

e Whenever animals go undetected, it might be that they were alive but missed, or
because they were dead and therefore could not be detected — imperfect detection.





https://www.youtube.com/watch?v=tyX79mPm2xY

In real life

e Animals cannot be monitored exhaustively, like humans in a medical trial.

e Animals are captured, marked or identified then released alive.

Then, these animals may be detected again, or go undetected — capture-recapture

e Whenever animals go undetected, it might be that they were alive but missed, or
because they were dead and therefore could not be detected — imperfect detection.

The Markov process for survival is only partially observed — hidden Markov models.






The truth is in 2

id winter 1 winter 2 winter 3 winter 4 winter 5
1 2 2 2

o U M WD
N N NN DD NN

1 1
1 1
1 1
1 2
1 2

N N M DN -
N N N DD

e Unfortunately, we have only partial access to z.
e We do observe y the detections and non-detections.

e How are z and y connected?



Dead animals go undetected

e When an animal isdead i.e. z = 2, it cannot be detected, therefore y = 0.

id winter 1 winter 2 winter 3 winter 4 winter 5
1 0 0 0

o U A WD
© O O O O O

1 1
1 1
1 1
1 O
1 0

© O O O B
© O O O O



Alive animals may be detected or not

e |fanimalisalive z = 1,itisdetectedy = 1w/ probpornoty = Ow/prob1l — p.

e Before first detection, we know nothing, and we proceed conditional on it.

id winter 1 winter 2 winter 3 winter 4 winter 5

1 NA 1 o) o) o)
2 1 0 o) o) o)
3 1 o) o) o) o)
4 1 1 1 o) 1
5 1 1 0 o) o)
6 1 1 1 1 o)

e This table y is what we observe in real life.



Observation matrix

e The observation probabilities can be packed in an observation matrix 2.

e |Inrows: the states alive z = 1 anddead z = 2.

e |n columns: the observations non-detected y = 1 and detected y = 2 (previously
coded O and 1 respectively).

0 (wl,l w1,2 ) ( 1 — D p)
(U2,1 w2,2 1 O
Observation matrix:



Markov model

e States zareingray.



Hidden Markov model

PYYYC
SR CRoIOR o

e Observations y are in white.



Hidden Markov model for survival

ORORORORO

| 1 1

DRORORCROR

e For states (ingray), z = lisalive, z = 2 is dead.

e For observations (in white), y = 1 is non-detected, y = 2 is detected



HMM likelihood

e Using the formula of total probability, then the likelihood of a Markov chain:

PI‘(y) — Pr(ylay27 <. 7yT)
- Z o ZPr(yl,yQ, ey YT|21, 22, - - -y 27) Pr(21, 22, . . ., 27)
21 2T

_ Z . Z (H wy) (Pr(zl) H%H,Zt)

e |t has a matrix formulation:

Pr(y)=0QT--- QT Q1



Example

e Let assume an animal is detected, then missed.

 Wehavey = (2, 1). What is the contribution of this animal to the likelihood?

2 2

Pr(y — (27 1)) — Z Z Wz ,51=2Wzy,y,=1 Pr(zl)721722

2:1:1 2:2:].



Example

e Let assume an animal is detected, then missed.

 Wehavey = (2, 1). What is the contribution of this animal to the likelihood?

(\V]

2
Pr(y — (27 1)) Z wzl,y1:2wzzay2:1 Pr(zl)721az2
1 2:2:].

N

1

(\V)

(w21>y1:2w22:1,y2:1 Pr(zl)7217z2:1 T wz1>y1:2w22:2,92:1 Pr(zl)721>z2:2)

IN]

—

I
—



Example

e Let assume an animal is detected, then missed.

 Wehavey = (2, 1). What is the contribution of this animal to the likelihood?

Pr(y = (2,1))

2 2

2
Z (w21>y1:2w22:1,y2:1 Pr(zl)7217z2:1 + wz1>y1:2w22:2,92:1 Pr(zl)721>z2:2)
Z1:1

|
S

Z1:1,y1:2w22:1,y2:151721:1,22:1 —l_ wzlzl,y1:2wz2:2,y2:151’)’21:1,22:2

Note: Pr(z; = 1) = ;1 = 1landPr(z; = 2) = 0.



Example

e Let assume an animal is detected, then missed.

 Wehavey = (2, 1). What is the contribution of this animal to the likelihood?

(\V]

2
Pr(y — (27 1)) Z wzl,y1:2wzzay2:1 Pr(zl)721az2
1 2:2:].

N

1

(\V)

(w21>y1:2w22:1,y2:1 Pr(zl)7217z2:1 T wz1>y1:2w22:2,92:1 Pr(zl)721>z2:2)

N
I
—

1
— wzlzl,y1:2wz2:1,y2:1517,21:1,,22:1 —l_ wzlzl,y1:2wz2:2,y2:151’)’21:1,22:2

=(1-p)p+(1—9¢)

Note: w,,—14,—2 = Pr(y1 = 2|21 = 1) = 1 because we condition on first capture.



Estimating the latent states z or not?

* In previous example, we got rid of the states, so that likelihood was a function of ¢
and p only. This is the function we would maximize in a Frequentist approach.

e The Bayesian approach with MCMC methods allows treating the latent states as if
they were parameters, and to be estimated as such.

e |nfering the latent states z can be useful to estimate prevalence, e.g. in animal
epidemiology with prevalence of a disease, in evolutionary ecology with sex ratio or in
conservation biology with prevalence of hybrids.

e Estimating the latent states is costly though, and if not required, marginalisation may
speed up computations. Actually, you can estimate the states afterwards (Viterbi).

e More about so-called marginalisation in Yackulic et al. (2020).

e The neat thing with Nimble is that it provides marginalised models through
nimbleEcology, we'll get back to it in Class 8.


https://veterinaryresearch.biomedcentral.com/articles/10.1186/1297-9716-45-39
https://onlinelibrary.wiley.com/doi/abs/10.1002/cjs.5550360105
https://onlinelibrary.wiley.com/doi/full/10.1002/ece3.4819?af=R
https://esajournals.onlinelibrary.wiley.com/doi/abs/10.1002/eap.2112

Our mode]

Zgirst ~ Multinomial(1, 6) likelihood]
2¢|2;—1 ~ Multinomial(1,,, , .,) likelihood]
Y¢|z; ~ Multinomial(1, w,,) likelihood
¢ ~ Beta(1,1) [prior for @]

p ~ Beta(1,1) [prior for p|



Nimble implementation



Priors

hmm.survival <- nimbleCode({
phi ~ dunif(@, 1) # prior survival
p ~ dunif(@, 1) # prior detection



HMM ingredients

# parameters

gamma
gamma [
gamma [
gamma [

deltal
delta]
omegal|
omega|
omega|
omegal|

I\D'I\)—\—\'I\)—\I\)N_\

.1 1

-

-

2 |
1]
2)

~- e bl ™

-

-

I\)‘—\I\)—\

<- phi
<- 1 -
<- 0
<- T

<- 1

<- 0
<- 1 -
<-Pp
<- T
<- 0

phi

o R R W W R R R R

Pr(alive t -> alive t+1)
Pr(alive t -> dead t+17)
Pr(dead t -> alive t+1)
Pr(dead t -> dead t+17)
Pr(alive t = 1) =

Pr(dead t = 1) =

Pr(alive t -> non-detected t)
Pr(alive t -> detected t)
Pr(dead t -> non-detected t)
Pr(dead t -> detected t)



Likelihood

# likelihood

for (i in T:N){

z[i,first[i]] ~ dcat(delta[1:2])

for (j in (first[i]+1):T){
z[i,j] ~ dcat(gamma[z[i, j-1], 1:2])
y[i,j] ~ dcat(omegal[z[i,j], 1:2])

Y

}
})



Constants

first <- apply(y, 1, function(x) min(which(x !=0)))
my.constants <- list(N = nrow(y), T =5, first = first)
my.constants

## SN

## [1] 44
##

## ST

## [1] 5
##

## Sfirst
## [1] 2
## [39] 3

411211121111 1T31T1T12131233114



Data

e The data are made of Os for non-detections and 1s for detections.
e To use the categorical distribution, we need to code 1, 2, etc. Value O is not accepted.

e Add 1togetthe correct format y = 1 for non-detection and y = 2 for detection.

my.data <- list(y =y + 1)



Initial values

zinits <- y + 1 # non-detection -> alive
zinits[zinits == 2] <- 1 # dead -> alive
initial.values <- function() list(phi = runif(1,0,1),
p = runif(1,0,1),
z = zinits)



Parameters to monitor

parameters.to.save <- c("phi", "p")
parameters.to.save

## [1] "phi" "p"



MCMC details

n.iter <- 5000
n.burnin <- 1000
n.chains <- 2



Run Nimble

mcmc.output <- nimbleMCMC(code = hmm.survival,

constant

S

= my.constants,

data = my.data,
initial.values,

1nits =
monitors
niter =
nburnin
nchains

n

= parameters.to.save,
.1ter,

n.burnin,

n.chains)



Posterior distribution of survival

library(MCMCvis)
MCMCsummary (mcmc.output, round = 2)

## mean sd 2.5% 50% 97.5% Rhat n.eff
## p 0.57 0.66 0.45 6.57 ©.69 1.00 503
## phi 0.86 0.64 6.78 06.86 ©0.93 1.01 499

The datais simulated, with true survival @ = 0.8 and detectionp = 0.6.



Further reading

e Zucchini, MacDonald and Langrock (2016) Hidden Markov Models for Time Series:
An Introduction Using R (2nd ed). Chapman and Hall/CRC.

e McClintock, B.T., Langrock, R., Gimenez, O., Cam, E., Borchers, D.L., Glennie, R. and
Patterson, T.A. (2020), Uncovering ecological state dynamics with hidden Markov
models. Ecology Letters, 23: 1878-1903.

e Yackulic, C. B. Dodrill, M., Dzul, M., Sanderlin, J. S., and Reid, J. A.. (2020). A need for
speed in Bayesian population models: a practical guide to marginalizing and
recovering discrete latent states. Ecological Applications 30:e02112.

e L.R.Rabiner (1989). A tutorial on hidden Markov models and selected applications in
speech recognition. Proceedings of the IEEE, 77:257-286.


https://www.routledge.com/Hidden-Markov-Models-for-Time-Series-An-Introduction-Using-R-Second-Edition/Zucchini-MacDonald-Langrock/p/book/9781482253832
https://onlinelibrary.wiley.com/doi/full/10.1111/ele.13610
https://esajournals.onlinelibrary.wiley.com/doi/abs/10.1002/eap.2112
https://web.ece.ucsb.edu/Faculty/Rabiner/ece259/Reprints/tutorial%20on%20hmm%20and%20applications.pdf
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Dead or alive: Survival estimation

The team

last updated: 2021-05-18



Ecological Monographs, 62(1), 1992, pp. 67-118
€ 1992 by the Ecological Socicty of Amernca

MODELING SURVIVAL AND TESTING BIOLOGICAL
HYPOTHESES USING MARKED ANIMALS:
A UNIFIED APPROACH WITH CASE STUDIES!

JEAN-DOMINIQUE LEBRETON
CEFE/CNRS, BP 5051, 34033 Monipellier Cedex, France

KENNETH P. BURNHAM
Colorado Cooperative Fish and Wildlife Research Unit, U.S. Fish and Wildlife Service,
201 Wagar Building, Fort Collins, Colorado 80523 USA

JEAN CLOBERT
Laboratoire d'Ecologie, Ecole Normale Supérieure, 46 rue d’Ulm 75231, Paris Cedex 05 France

DAviD R. ANDERSON
Colorado Cooperative Fish and Wildlilfe Research Unit, U.S. Fish and Wildlife Service,
201 Wagar Building, Fort Collins, Colorado 80523 USA



History of the Cormack-Jolly-Seber (CJS) model

S.T. Buckland (2016). A Conversation with Richard M. Cormack. Statistical Science 31: 142-150.

Buckland: George Jolly was a colleague of yours in
the 1960s. Could you describe your interactions with
him?

Cormack: George was in the ARC Unit of Statis-
tics in the same corridor as I was. His main job was
designing and conducting agricultural surveys in Scot-
land. There wasn’t a practice of giving seminars in the
department to talk to colleagues about what one was
doing, and David Finney’s appointees had been cho-
sen to cover all the varied areas of statistics rather
than build a research group in a particular area. So
despite the fact that I met George every day at cof-
fee, and, indeed, we caused David a lot of angst as,
on many mornings, we played kriegspiel (a version of
chess where you don’t see the other person’s board
and a referee judges—very good for developing infer-
ence), we never mentioned work and mark-recapture.
I don’t remember George noticing my Biometrika pa-
per in 1964 (Cormack, 1964), or indeed the practical
paper in British Birds in 1963 (Dunnet, Anderson and
Cormack, 1963). It was completely unknown to the two
of us that we were working in the same area.

Buckland: What interactions did you have with
George Seber?

Cormack: Before the 1965 papers (Jolly, 1965;
Seber, 1965), George Seber and I had no contact what-
soever. After the papers, yes, we did. We got into deep
communication after the first papers, and he was all for
sending me drafts of everything he did. He produced
stuff at a colossal rate and his encyclopaedic knowl-
edge was unbelievable. I'm not sure he ever actually
worked closely with biologists, but, when he was writ-
ing his book, he asked if I would comment on the draft
chapters on the bits I knew about. But you have to re-
alise that communication between opposite corners of
the world took time. At one point, I received a plaintive
handwritten letter saying “The University has cut down
on postage and I’m not allowed to post the draft chapter
airmail and you will have to wait for it to come by sur-
face mail from New Zealand.” By the time it arrived,
I already had another airmail letter from him saying,
“I’'m sorry you haven’t been able to comment on the
chapter—I’ve had to submit it!” To some extent, the
opposite 1s true now: response 1s too quick.



Interface Focus (2012) 2, 190204
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A review of Bayesian state-space
modelling of capture—recapture—
recovery data

Ruth King*

School of Mathematics and Statistics and Centre for Research into Ecological and
Environmental Modelling, University of St Andrews, St Andrews, Fife KY16 9LZ, UK

Traditionally, state-space models are fitted to data where there is uncertainty in the obser-
vation or measurement of the system. State-space models are partitioned into an
underlying system process describing the transitions of the true states of the system over
time and the observation process linking the observations of the system to the true states.
Open population capture—recapture—recovery data can be modelled in this framework by
regarding the system process as the state of each individual observed within the study in
terms of being alive or dead, and the observation process the recapture and/or recovery pro-
cess. The traditional observation error of a state-space model is incorporated via the
recapture/recovery probabilities being less than unity. The models can be fitted using a
Bayesian data augmentation approach and in standard BUGS packages. Applying this
state-space framework to such data permits additional complexities including individual het-
erogeneity to be fitted to the data at very little additional programming effort. We consider
the efficiency of the state-space model fitting approach by considering a random effects model
for capture—recapture data relating to dippers and compare different Bayesian model-fitting
algorithms within WinBUGS.



What we've seen so far

ORORORORO:

- b p - p 1 1

e Forstates (ingray),z = lisalive, z = 2isdead.

e For observations (in white), y = 1 is non-detected, y = 2 is detected



In the CJS model, survival and recapture are time-varying

\ -
OO0

e Survival probability is ¢; = Pr(zi11 = 1|2: = 1).
e Recapture (detection) probability is p; = Pr(y; = 1|z; = 1).

e Accounts for variation in e.g. environmental conditions (survival) or sampling effort
(detection).



Capture, mark and recapture

Kelly Powell

Artificial marks



Capture, mark and recapture

Natural marks



The famous Dipper example

White-throated Dipper (Cinclus cinclus)

Gilbert Marzolin



294 dippers captured and recaptured between 1981 and
1987 with known sex and wing length
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Back to Nimble.



Our model so far (¢, p)

hmm.phip <- nimbleCode({

1)

phi ~ dunif(@, 1) # prior survival
p ~ dunif(@, 1) # prior detection

# likelihood

gamma[1,1] <- phi
gamma[1,2] <- 1 - phi

gamma[2,1] <- ©
gamma[2,2] <- 1
delta[1] <- 1

delta[2] <- ©

omegal[1,1] <- 1
omegal[1,2] <- p
omegal[2,1] <- 1
omega[2,2] <- ©
for (i in 1:N){

Y

o R R KR KR R R R W

Pr(alive t -> alive t+1)
Pr(alive t -> dead t+17)
Pr(dead t -> alive t+17)
Pr(dead t -> dead t+1)
Pr(alive t = 1) =1

Pr(dead t = 1) = 0

Pr(alive t -> non-detected t)
Pr(alive t -> detected t)
Pr(dead t -> non-detected t)
Pr(dead t -> detected t)

z[1i,first[i]] ~ dcat(delta[1:2])

for (j in (first[i]+1):T){
z[i,j] ~ dcat(gamma[z[i,j-1], 1:2])
y[i,j] ~ dcat(omegalz[i,j], 1:2])

}
}



Our model so far (¢, p)

mean sd 2.5% 506% 97.5% Rhat n.eff
phi 6.56 0.03 0.52 0.56 ©0.62 1.00 500
o .80 0.03 0.83 6.89 ©0.94 1.13 273



The CJS model (¢, p;)

hmm.phitpt <- nimbleCode({
delta[1] <- 1 # Pr(alive t = 1) =1
deltal[2] <- © # Pr(dead t = 1) = @
for (t in 1:(T-1)){
phi[t] ~ dunif(@, 1) # prior survival

gammal[1,1,t] <- phi[t] # Pr(alive t -> alive t+1)
gamma[1,2,t] <- 1 - phi[t] # Pr(alive t -> dead t+1)
gamma[2,1,t] <- © # Pr(dead t -> alive t+17)
gamma[2,2,t] <- 1 # Pr(dead t -> dead t+1)

plt] ~ dunif(@, 1) # prior detection

omegal[1,1,t] <- 1 - p[t] # Pr(alive t -> non-detected t)
omegal[1,2,t] <- p[t] # Pr(alive t -> detected t)
omegal[2,1,t] <- 1 # Pr(dead t -> non-detected t)
omegal[2,2,t] <- © # Pr(dead t -> detected t)

}
# likelihood

for (i in 1:N){
z[i,first[i]] ~ dcat(delta[1:2])
for (j in (first[i]+1):T){
z[i,j] ~ dcat(gamma[z[i,j-1], 1:2, j-1])
y[i,j] ~ dcat(omegal[z[i,j], 1:2, j-1])
}
}



The CJS model (¢, p;)

hmm.phitpt <- nimbleCode({
delta[1] <- 1 # Pr(alive t = 1) =1
deltal[2] <- © # Pr(dead t = 1) = @
for (t in 1:(T-1)){
phi[t] ~ dunif(@, 1) # prior survival

gammal[1,1,t] <- phi[t] # Pr(alive t -> alive t+1)
gamma[1,2,t] <- 1 - phi[t] # Pr(alive t -> dead t+1)
gamma[2,1,t] <- © # Pr(dead t -> alive t+17)
gamma[2,2,t] <- 1 # Pr(dead t -> dead t+1)

plt] ~ dunif(@, 1) # prior detection

omegal[1,1,t] <- 1 - p[t] # Pr(alive t -> non-detected t)
omegal[1,2,t] <- p[t] # Pr(alive t -> detected t)
omegal[2,1,t] <- 1 # Pr(dead t -> non-detected t)
omegal[2,2,t] <- © # Pr(dead t -> detected t)

}
# likelihood

for (i in 1:N){
z[i,first[i]] ~ dcat(delta[1:2])
for (j in (first[i]+1):T){
z[i,j] ~ dcat(gamma[z[i,j-1], 1:2, j-1])
y[i,j] ~ dcat(omegal[z[i,j], 1:2, j-1])
}
}



The CJS model (¢, p;)

hmm.phitpt <- nimbleCode({
delta[1] <- 1 # Pr(alive t = 1) =1
deltal[2] <- © # Pr(dead t = 1) = @
for (t in 1:(T-1)){
phi[t] ~ dunif(@, 1) # prior survival

gammal[1,1,t] <- phi[t] # Pr(alive t -> alive t+1)
gamma[1,2,t] <- 1 - phi[t] # Pr(alive t -> dead t+1)
gamma[2,1,t] <- © # Pr(dead t -> alive t+17)
gamma[2,2,t] <- 1 # Pr(dead t -> dead t+1)

plt] ~ dunif(@, 1) # prior detection

omegal[1,1,t] <- 1 - p[t] # Pr(alive t -> non-detected t)
omegal[1,2,t] <- p[t] # Pr(alive t -> detected t)
omegal[2,1,t] <- 1 # Pr(dead t -> non-detected t)
omegal[2,2,t] <- © # Pr(dead t -> detected t)

}
# likelihood

for (i in 1:N){
z[i,first[i]] ~ dcat(delta[1:2])
for (j in (first[i]+1):T){
z[i,j] ~ dcat(gamma[z[i,j-1], 1:2, j-1])
y[i,j] ~ dcat(omegal[z[i,j], 1:2, j-1])
}
}



The CJS model (¢, p;)

hmm.phitpt <- nimbleCode({
delta[1] <- 1 # Pr(alive t = 1) =1
deltal[2] <- © # Pr(dead t = 1) = @
for (t in 1:(T-1)){
phi[t] ~ dunif(@, 1) # prior survival

gammal[1,1,t] <- phi[t] # Pr(alive t -> alive t+1)
gamma[1,2,t] <- 1 - phi[t] # Pr(alive t -> dead t+1)
gamma[2,1,t] <- © # Pr(dead t -> alive t+17)
gamma[2,2,t] <- 1 # Pr(dead t -> dead t+1)

plt] ~ dunif(@, 1) # prior detection

omegal[1,1,t] <- 1 - p[t] # Pr(alive t -> non-detected t)
omegal[1,2,t] <- p[t] # Pr(alive t -> detected t)
omegal[2,1,t] <- 1 # Pr(dead t -> non-detected t)
omegal[2,2,t] <- © # Pr(dead t -> detected t)

}
# likelihood

for (i in 1:N){
z[i,first[i]] ~ dcat(delta[1:2])
for (j in (first[i]+1):T){
z[i,j] ~ dcat(gamma[z[i,j-1], 1:2, j-1])
y[i,j] ~ dcat(omegal[z[i,j], 1:2, j-1])
}
}



The CJS model (¢, p;)

hmm.phitpt <- nimbleCode({
delta[1] <- 1 # Pr(alive t = 1) =1
deltal[2] <- © # Pr(dead t = 1) = @
for (t in 1:(T-1)){
phi[t] ~ dunif(@, 1) # prior survival

gammal[1,1,t] <- phi[t] # Pr(alive t -> alive t+1)
gamma[1,2,t] <- 1 - phi[t] # Pr(alive t -> dead t+1)
gamma[2,1,t] <- © # Pr(dead t -> alive t+17)
gamma[2,2,t] <- 1 # Pr(dead t -> dead t+1)

plt] ~ dunif(@, 1) # prior detection

omegal[1,1,t] <- 1 - p[t] # Pr(alive t -> non-detected t)
omegal[1,2,t] <- p[t] # Pr(alive t -> detected t)
omegal[2,1,t] <- 1 # Pr(dead t -> non-detected t)
omegal[2,2,t] <- © # Pr(dead t -> detected t)

}
# likelihood

for (i in 1:N){
z[i,first[i]] ~ dcat(delta[1:2])
for (j in (first[i]+1):T){
z[i,j] ~ dcat(gamma[z[i,j-1], 1:2, j-1])
y[i,j] ~ dcat(omegal[z[i,j], 1:2, j-1])
}
}



The CJS model (¢, p;)
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Time-varying survival (¢, p)

hmm.phitp <- nimbleCode({

for (t in 1:(T-1)){

phi[t] ~ dunif(@, 1) # prior survival
gamma[1,1,t] <- phi[t] # Pr(alive t -> alive t+17)
gamma[1,2,t] <- 1 - phi[t] # Pr(alive t -> dead t+1)

gamma[2,1,t] <- ©
gamma[2,2,t] <- 1
}

# Pr(dead t -> alive t+1)
# Pr(dead t -> dead t+1)

p ~ dunif(@, 1) # prior detection

delta[1] <- 1
delta[2] <- ©
omegal[1,1] <- 1 - p
omegal[1,2] <- p
omegal[2,1] <- 1
omegal[2,2] <- ©

# likelihood

for (i in 1:N){

# Pr(alive t = 1) =1

# Pr(dead t = 1) = 6

# Pr(alive t -> non-detected t)
# Pr(alive t -> detected t)

# Pr(dead t -> non-detected t)
# Pr(dead t -> detected t)

z[i,first[i]] ~ dcat(delta[1:2])

for (j in (first[i]+1):T){
z[i,j] ~ dcat(gamma[z[i,j-1], 1:2, j-1])
y[i,j] ~ dcat(omegal[z[i,j], 1:2])

}
}



Time-varying survival (¢, p)
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Time-varying detection (¢, p;)

hmm.phipt <- nimbleCode({
phi ~ dunif(@, 1) # prior survival

gamma[1,1] <- phi # Pr(alive t -> alive t+1)
gamma[1,2] <- 1 - phi # Pr(alive t -> dead t+17)
gamma[2,1] <- © # Pr(dead t -> alive t+17)
gamma[2,2] <- 1 # Pr(dead t -> dead t+1)
delta[1] <- 1 # Pr(alive t = 1) = 1
delta[2] <- © # Pr(dead t = 1) = 6

for (t in 1:(T-1)){
plt] ~ dunif(@, 1) # prior detection

omegal[1,1,t] <- 1 - p[t] # Pr(alive t -> non-detected t)
omegal[1,2,t] <- p[t] # Pr(alive t -> detected t)
omegal[2,1,t] <- 1 # Pr(dead t -> non-detected t)
omegal[2,2,t] <- © # Pr(dead t -> detected t)

}
# likelihood

for (i in 1:N){
z[i,first[i]] ~ dcat(delta[1:2])
for (j in (first[i]+1):T){
z[i,j] ~ dcat(gamma[z[i,j-1], 1:2])
y[i,j] ~ dcat(omegal[z[i,j], 1:2, j-1])
}
}



Time-varying detection (¢, p;)
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How to select a best model?



Model selection

e Which of the four models above is best supported by the data?

e The proportion of explained variance R? is problematic, because the more variables
you have, the bigger R? is.

e Theideais to penalize models with too many parameters.



Akaike information criterion (AIC)

AIC = —2log(L(f1,...,0k)) + 2K

with L the likelihood and K the number of parameters 6;.



Akaike information criterion (AIC)

AIC = —2log(L(f1,...,0%)) + 2K

A measure of goodness-of-fit of the model to the data: the more parameters you have,
the smaller the deviance is (or the bigger the likelihood is).



Akaike information criterion (AIC)

AIC = —2log(L(01,...,0k)) + 2K

A penalty: twice the number of parameters K



Akaike information criterion (AIC)

e AIC makes the balance between quality of fit and complexity of a model.
e Best model is the one with lowest AlIC value.

e Two models are difficult to distinguish if AAIC < 2.



Bayesian version

Watanabe-Akaike (Widely-Applicable) Information Criteria or WAIC:
n
WAIC = -2 "log E[Pr(y; | 6)] + 2pwarc
i=1
e where E[p(y; | 0)] is the posterior mean of the likelihood evaluated pointwise at
each tth observation.
e pwaAIC IS a penalty computed using the posterior variance of the likelihood.

e More in this video https://www.youtube.com/watch?v=vSjL2Zc-gEQ by R. McElreath.

e Nimble provides the conditional WAIC, where all parameters directly involved in the
likelihood are considered. If you would want to calculate the marginal WAIC,
integrating over latent variables, you could monitor the relevant nodes and carry out
the calculations yourself based on the MCMC output.


https://www.youtube.com/watch?v=vSjL2Zc-gEQ

How to compute WAIC in Nimble?

parameters.to.save <- c("phi", "p")
mcmec.phitpt <- nimbleMCMC(code = hmm.phitpt,
constants

= my.constants,

data = my.data,
initial.values,

inits =
monitors
niter =
nburnin
nchains

n

= parameters.to.save,
.iter,

n.burnin,

n.chains)



How to compute WAIC in Nimble?

parameters.to.save <- c("phi", "p", "z"
mcmec.phitpt <- nimbleMCMC(code = hmm.phitpt,
constants = my.constants,
data = my.data,
inits = initial.values,
monitors = parameters.to.save,
niter = n.iter,
nburnin = n.burnin,
nchains = n.chains,
WAIC = TRUE)



Dipper example - continued

model WAIC
1 (phi,p) 265.9168
2 (phit,p) 277.5514
3 (phi,pt) 270.2175
4 (phit,pt) 308.8417



Live demo




Can we explain time variation?



Embrace heterogeneity

¢ |Include temporal covariates, say x;.

o logit(¢:) = B1 + Ba:.

e Let'sinvestigate the effect of water flow on dipper survival (Marzolin 2002).


https://doi.org/10.2307/3802934

hmm.phiflowp <- nimbleCode ({

1)

delta[1] <- 1 # Pr(alive t = 1) = 1
delta[2] <- © # Pr(dead t = 1) = @
for (t in 1:(T-1)){

logit(phi[t]) <- beta[1] + beta[2] * flow[t]

gamma[1,1,t] <- phi[t] # Pr(alive t -> alive t+1)
gamma[1,2,t] <- 1 - phi[t] # Pr(alive t -> dead t+1)
gamma[2,1,t] <- © # Pr(dead t -> alive t+1)
gamma[2,2,t] <- 1 # Pr(dead t -> dead t+1)

}
p ~ dunif(@, 1) # prior detection
omegal[1,1] <- 1 - p # Pr(alive t -> non-detected t)

omegal[1,2] <- p # Pr(alive t -> detected t)
omegal[2,1] <- 1 # Pr(dead t -> non-detected t)
omegal[2,2] <- © # Pr(dead t -> detected t)

beta[1] ~ dnorm(©, 1.5) # prior intercept
beta[2] ~ dnorm(@, 1.5) # prior slope
# likelihood
for (i in 1:N){
z[i,first[i]] ~ dcat(delta[1:2])
for (j in (first[i]+1):T){
z[i,j] ~ dcat(gamma[z[i,j-1], 1:2, j-1])
y[i,j] ~ dcat(omegal[z[i,j], 1:2])
}
}



# water flow in L/s
water_flow <- c(443, 1114, 529, 434, 627, 466) # 19871, 1982, ..., 1987
water_flow_st <- (water_flow - mean(water_flow))/sd(water_flow)

my.constants <- list(N = nrow(y),
T = ncol(y),
first = first,
flow = water_flow_st)

initial.values <- function() list(beta = rnorm(2,0,1),
p = runif(1,0,1),
z = zinits)

parameters.to.save <- c("beta", "p", "phi")



Regression intercept and slope

I ! ! J ! !
-0.6 -0.4 -0.2 0.0 0.2 0.4

Parameter Estimate



Time-dependent (covariate constrained) survival probability estimates

phi[1] —————
phi[2] ———
phi[3] —
phi[4] ————
phi[5] —————
phil6] —
| | | | |
0.3 0.4 0.5 0.6 0.7

Parameter Estimate



Embrace heterogeneity

¢ |nclude temporal covariates, say x;

o logit(¢:) = B1 + Baxy

o |ftemporal variation not fully explained by covariates, add random effects

* logit(¢t) — 51 + 525315 T Ety Et ™ N(07 02)



hmm.phiflowREp <- nimbleCode( {
for (t in 1:(T-1)){
logit(phi[t]) <- beta[1] + beta[2] * flow[t] + eps[t]
eps[t] ~ dnorm(@, sd = sdeps)

}
sdeps ~ dunif(@,10)



What about individual heterogeneity?

e Discrete covariate like, e.g., sex

e Continuous covariate like, e.g., mass or size



Sex and wing length in Dipper
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Sex effect

e Let'suse acovariate sex that takes value O if male, and 1 if female
e And write logit(¢;) = B1 + B2 sex; for bird ¢

Then male survival is

logit(¢i) = B1

And female survival is

logit(¢i) = B1 + B2



Nimble implementation with sex as a covariate

hmm.phisexp <- nimbleCode({

..%or (1 in T:N){
logit(phi[i]) <- beta[1] + beta[2] * sex[i]

gamma[1,1,i] <- phi[i] # Pr(alive t -> alive t+1)
gamma[1,2,i] <- 1 - phi[i] # Pr(alive t -> dead t+1)
gamma[2,1,i] <- © # Pr(dead t -> alive t+1)
gamma[2,2,i] <- 1 # Pr(dead t -> dead t+17)

}

beta[1] ~ dnorm(mean = 0, sd = 1.5)

beta[2] ~ dnorm(mean = 0, sd = 1.5)

phi_male <- 1/(1+exp(-beta[1]))
phi_female <- 1/(1+exp(-(beta[1]+beta[2])))

# likelihood
for (i in 1:N){
z[i,first[i]] ~ dcat(delta[1:2])
for (j in (first[i]+1):T){
z[i,j] ~ dcat(gamma[z[i,j-1]1, 1:2, i])
y[i,j] ~ dcat(omega[z[i,j], 1:2])
}
}
})



mean
beta[1] 0.29
beta[2] -0.09
P 0.90
phi_female 0.55
phi_male 0.57

[av I av BN v BN v )

sd 2.5%

.14 0.01
.19 -0.47
.03 0.83
.04 0.48
.03 0.50

50% 97.
0.29 0.57
-0.16 0.29
0.90 0.95
0.55 0.62
0.5/ 0.64

1

_— )

5% Rhat n.eff
.01
.01
.02
.02
.01

237
241
253
698
237



Nimble implementation with nested indexing

e Let'suse acovariate sex that contains 1s and 2s, indicating the sex of each individual:
1if male, and 2 if female

for (i in 1:N){
phi[i] <- beta[sex[i]]
gamma[1,1,i] <- phi[i]
gamma[1,2,i] <- 1 - phi[i]
gamma[2,1,i] <- ©
gamma[2,2,i] <- 1

}

beta[1] ~ dunif(©,1)

beta[2] ~ dunif(@,1)

e Eg. forindividualt = 2,beta[sex[1i]] givesbeta[sex[2]] whichwill bebeta[1]
or beta[2] depending on whether sex[2] is 1 or 2.



mean sd 2.5% 560%

beta[1] ©0.57 ©0.03 06.50 0.57
beta[2] ©0.55 0.03 0.48 0.55

P

©.90 0.03 0.83 0.90

97.5% Rhat n.eff

0.63 1.00
0.62 1.02
0.95 1.160

616
657
229



What about wing length?

for (i in 1:N){
loglt(phl[l

}

betal[1] ~ dnorm(mean = 0,
beta[2] ~ dnorm(mean = @,

gamma [
gamma [
gamma [
gamma [

(1,1,1]

(1,2,1]
(2,1,1]
(2,2,1]

) <- betal[1] +

#

<- phi[i]

<- 1 - phi[i]
<- 0

<- 1

#

sd
sd

beta[2] * winglength[i]
# Pr(alive t -> alive t+1)
# Pr(alive t -> dead t+17)
Pr(dead t -> alive t+17)
Pr(dead t -> dead t+17)

= 1.5) # intercept
1.5) # slope



Wing length

1.00

0.75

0.50

estimated survival

0.25

0.00

-1 0 1 2
wing length

e You may test an effect of both sex and wing length, see exercise in Worksheets.



What if covariates vary with individual and time?

Think of age for example (see exercises in Worksheets); covariate or nested indexing
works fine.

Now, think of body size across life.
e Problem is we cannot record size when animal is non-detected.
e Discretize in small, medium and large and treat as a state — more later.

e Assume a model for covariate and fill in missing values (imputation).



Live demo
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Why Bayes?



Why Bayes? Incorporate prior information.



Vague prior
e Sofar, we have assumed a vague prior:
Gprior ~ Beta(1l,1) = Uniform(0,1)
o With avague prior, mean posterior survival is @p,sterior = 0.56

e With credible interval [0.52, 0.62]
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0.55 0.60 0.65

0.50
survival

Posterior distribution of survival in color (two chains), prior in gray dashed line.



How to incorporate prior information?

e Using information on body mass and annual survival of 27 European passerines, we
can predict survival of European dippers using only body mass.

e For dippers, body mass is 59.8g, therefore ¢ = 0.57 withsd = 0.073.
e Assuming an informative prior ¢,,;,» ~ Normal(0.57, 0.073%).

e Mean posterior @posterior = 0.56 with credible interval [0.52,0.61].

No increase of precision in posterior inference.



How to incorporate prior information?

e Now if you had only the three first years of data, what would have happened?
e Width of credible interval is 0.53 (vague prior) vs. 0.24 (informative prior).

e Huge increase of precision in posterior inference, a 120% gain!



Compare survival posterior with and without informative prior

6 -
24
g . w/ informative prior
© ~ w/vague prior

2 .

0 .

0.4 0.6 0.8 1.0
survival



Prior elicitation via moment matching

e The prior ¢,;or ~ Normal(0.57, 0.073%) is not entirely satisfying
e Remember the Beta distribution

e Recall that the Beta distribution is a continuous distribution with values between O
and 1. Useful for modelling survival or detection probabilities.

If X ~ Beta(a, ), then the first and second moments of X are:

p=E(X)=— j_ 3
o2 = Var(X) = op




Moment matching

In the capture-recapture example, we know a priori that the mean of the probability
we're interested inis i = 0.57 and its variance is 6> = 0.073.

e Parameters ;1 and o are seen as the moments of a Beta (o, 3) distribution.

Now we look for values of o and 3 that match the observed moments of the Beta
distribution p and o2

We need another set of equations:




Moment matching

e For our model, that means:

(alpha <- ( (1 - ©.57)/(0.073*0.873) - (1/0.57) )*0.5742)
[1] 25.64636

(beta <- alpha * ( (1/06.57) - 1))

[1] 19.34726

e Now use ¢, ~ Beta(a = 25.6, 8 = 19.3) instead of
Gprior ~ Normal(0.57,0.073?)



Prior predictive checks



Linear regression

Unreasonable prior 3 ~ N(0,1000%) Reasonable prior 8 ~ N(2,0.5%)
4e-04
3e-04 0-6
= =
2 2604 g 04
() ]
© ©
1e-04 0.2
0e+00 0.0
-3000 -2000 -1000 0 1000 2000 1 2 3

Height (m) Height (m)



Logistic regression

Unreasonable prior
logit(¢) = 8 ~ N(0,10°)

1.5

—_
o

density
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0.25

0.50
survival

0.75

1.00
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0.9

0.6

density

0.3

0.0

0.00

Reasonable prior
logit(¢) = B ~ N(0,1.5%)

0.25

0.50
survival

0.75

1.00



Capture-recapture models rely on assumptions

e Design
o No mark lost

o ldentity of individuals recorded without error (no false positives)
o Captured individuals are arandom sample

e Model

o Homogeneity of survival and recapture probabilities
o |Independence between individuals (overdispersion)

e Test validity of assumptions
o These assumptions should be valid, whatever inferential framework
o Use goodness-of-fit tests — Pradel et al. (2005)
o Rimplementation with package R2ucare
o Posterior predictive checks can also be used (not covered; Gelman et al. 2020)


https://besjournals.onlinelibrary.wiley.com/doi/full/10.1111/2041-210X.13014
https://arxiv.org/pdf/2011.01808.pdf

Parameter-redundancy issue

380
last_survival max_ dev
370 0.41 331.35
o
S 0.52 328.48
% 360 0.7 328.48
;% 0.8 328.48
8 350
340
330 ® ° ° °
0.25 0.50 0.75

survival over last time interval

e |ast survival and recapture probabilities cannot be estimated separately.

e Poor mixing of the chains.



Prior-posterior overlap for ¢4 and ¢

0
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Prior-posterior overlap for pg and pr
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What does survival actually mean in capture-recapture ?

e Survival refers to the study area.

e Mortality and permanent emigration are confounded.

e Therefore we estimate apparent survival, not true survival.

e Apparent survival probability = true survival x study area fidelity.

e Consequently, apparent survival < true survival unless study area fidelity = 1.

e Use caution with interpretation. If possible, combine with ring-recovery data, or go
spatial to get closer to true survival.



Further reading

e CJSstate-space formulation Gimenez et al. (2007) and Royle (2008).

e Work on missing values by Bonner et al. (2006) and Langrock and King (2013) and
Worthington et al. (2015).

e The example on how to incorporate prior information is in McCarthy and Masters
(2005).

e Combine live recapture w/ dead recoveries by Lebreton et al. (1999) and go spatial to
account for emigration Gilroy et al. (2012) and Schaub & Royle (2014).

e Non-identifiability in a Bayesian framework, see Gimenez et al. (2009) and book by
Cole (2020).


https://oliviergimenez.github.io/pubs/Gimenezetal2007EcologicalModelling.pdf
https://onlinelibrary.wiley.com/doi/10.1111/j.1541-0420.2007.00891.x
https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1541-0420.2005.00399.x
https://projecteuclid.org/journals/annals-of-applied-statistics/volume-7/issue-3/Maximum-likelihood-estimation-of-markrecapturerecovery-models-in-the-presence-of/10.1214/13-AOAS644.full
https://link.springer.com/article/10.1007/s13253-014-0184-z
https://besjournals.onlinelibrary.wiley.com/doi/abs/10.1111/j.1365-2664.2005.01101.x
https://www.tandfonline.com/doi/pdf/10.1080/00063659909477230
https://esajournals.onlinelibrary.wiley.com/doi/full/10.1890/12-0124.1
https://besjournals.onlinelibrary.wiley.com/doi/full/10.1111/2041-210X.12134
https://oliviergimenez.github.io/pubs/Gimenezetal2009-weakidentifiability.pdf
https://www.routledge.com/Parameter-Redundancy-and-Identifiability/Cole/p/book/9781498720878

On the move: Transition estimation
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Res. Popul, Ecol. (1573) 15, 1-8.

THE ESTIMATION OF POPULATION SIZE, MIGRATION
RATES AND SURVIVAL IN A STRATIFIED
POPULATION

A, Neil ARNASON

Computer Science Department, University of Manitoba,
Winnipeg, Canada

INTRODUCTION

CaAaPMAN and JUNGE (1956, hereafter referred to as C & J) developed estimates
of stratum size and migration rates for a population divided into # > 2 areas (strata)
when animals were free to migraie from area to area. The method was bhased on
data from sampling and marking observations on two occasions. The method was
extended by DARrocH (1961) to allow sampling in different numbers of strata at
the two sampling times, and to show how to treat some special problems that arise
when using the method. These problems arise when a particular data matrix (which
must be inverted) is singular or ill-conditioned. The same problems could occur
with the estimates which will be given in this paper.

In order to account for deaths or losses from the areas due to permanent
emigtration out of the areas being sampled, it is necessary to sample on at least
three occasions. [ developed estimates for the three sample experiment on two areas

. A Furms o - - - Emam e % - -




BIOMETRICS 49, 177-193
March 1993

Estimating Migration Rates Using Tag-Recovery Data

Carl J. Schwarz

Department of Statistics, University of Manitoba,
Winnipeg, Manitoba R3T 2N2, Canada

Jake F. Schweigert

Biological Sciences Branch, Pacific Biological Station,
Department of Fisheries and Oceans, Nanaimo, British Columbia VIR 5K 6, Canada

and
A. Neil Arnason

Department of Computer Science, University of Manitoba,
Winnipeg, Manitoba R3T 2N2, Canada

SUMMARY

Tag-recovery data are used to estimate migration rates among a set of strata. The model formulation
is a simple matrix extension of the formulation of a tag-recovery experiment discussed by Brownic et
al. (1985, Statistical Inference from Band-Recovery Data—A Handbook, 2nd edition, Washington,
D.C.: U.S. Department of the Interior). Estimation 1s more difficult because of the convolution of
parameters between release and recovery and this convolution may cause estimates of the survival/
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Ecology, 73(1), 1992, pp. 306-312
@ 1992 by the Ecological Society of America

ESTIMATING TRANSITION PROBABILITIES FOR STAGE-
BASED POPULATION PROJECTION MATRICES USING
CAPTURE-RECAPTURE DATA!

James D, NicHOLS AND JOHN R. SAUER

United States Fish and Wildlife Service, Patuxent Wildlife Research Center, Laurel, Maryland 20708 USA

KENNETH H. POLLOCK

Institute of Statistics, North Carolina State University, Box 8203, Raleigh, North Carolina 27695-8203 USA

Jay B. HESTBECK?

United States Fish and Wildlife Service, Patuxent Wildlife Research Center, Laurel, Maryland 20708 USA

Abstract. In stage-based demography, animals are often categorized into size (or mass)
classes, and size-based probabilities of surviving and changing mass classes must be esti-
mated before demographic analyses can be conducted. In this paper, we develop two
procedures for the estimation of mass transition probabilities from capture-recapture data.
The first approach uses a multistate capture-recapture model that is parameterized directly
with the transition probabilities of interest, Maximum likelihood estimates are then ob-
tained numerically using program SURVIV, The second approach involves a modification
of Pollock’s robust design. Estimation proceeds by conditioning on animals caught in a
particular class at time /, and then using closed models to estimate the number of these
that are alive in other classes at i + 1. Both methods are illustrated by application to
meadow vole, Microtus pennsylvanicus, capture-recapture data. The two methods produced
reasonable estimates that were similar. Advantages of these two approaches include the
directness of estimation, the absence of need for restrictive assumptions about the inde-
pendence of survival and growth, the testability of assumptions, and the testability of
related hypotheses of ecological interest (e.g., the hypothesis of temporal variation in
transition probabilities).

Key words: capture-recapture models; Microtus pennsylvanicus; multistate models; parameter
E:s;f;fl{lffﬂn; Pollock’s robust design; stage-based population projection matrices; stage transition prob-
apinties.

v T5(T), 1994, pp. 2052-2065

Ecology, 75( : i
@ 1994 by the Ecological Society of America

ESTIMATING BREEDING PROPORTIONS AND TESTING
HYPOTHESES ABOUT COSTS OF REPRODUCTION WITH
CAPTURE-RECAPTURE DATA!

James D. NicHOLS AND James E. Hines
National Biological Survey, Patuxent Wildlife Research Cenier, Laurel, Maryland 20708 USA

KENNETH H. POLLOCK
Institute of Statistics, North Carolina State University, Box 8203,
Raleigh, North Carolina 27695-8203 USA

RoBerT L. Hmz AND WILLIAM A. LINK
National Biological Survey, Patuxent Wildlife Research Center, Laurel, Maryland 20708 USA

Abstract. The proportion of animals in a population that breeds is an important
determinant of population growth rate. Usual estimates of this quantity from field sampling
data assume that the probability of appearing in the capture or count statistic is the same
for animals that do and do not breed. A similar assumption is required by most existing
methods used to test ccologically interesting hypotheses about reproductive costs using
field sampling data. However, in many field sampling situations breeding and nonbreeding
animals are likely to exhibit different probabilities of being seen or caught. In this paper,
we propose the use of multistate capture-recapture models for these estimation and testing
problems. This methodology permits a formal test of the hypothesis of equal capture/
sighting probabilities for breeding and nonbreeding individuals. Two estimators of breeding
proportion (and associated standard errors) are presented, one for the case of equal capture
probabilitics and one for the case of unequal capture probabilities. The multistate modeling
framework also yields formal tests of hypotheses about reproductive costs to future repro-
duction or survival or both fitness components. The general methodology is illustrated
using capture-recapture data on female meadow voles, Microtus pennsylvanicus. Resulting
estimates of the proportion of reproductively active females showed strong seasonal vari-
ation, as expected, with low breeding proportions in midwinter. We found no evidence of
reproductive costs extracted in subsequent survival or reproduction. We believe that this
methodological framework has wide application to problems in animal ecology concerning
breeding proportions and phenotypic reproductive costs.

Key words: capture/sighting probabifity; Microtus pennsylvanicus; multistate capture-recapiure
models; proportion of animals breeding; reproductive costs; survival rate.



Wintering site ﬁcielity in Canada Geese




3 sites Carolinas, Chesapeake, Mid-Atlantic, with 21277 banded geese,
data kindly provided by Jay Hestbeck (Hestbeck et al. 1991)

year_1984 year_1985 year_1986 year_1987 year_1988 year_1989

o) 2 2 o) o) 0
o) 0 0 0 0 2
o) 0 o) 1 o) o)
o) 0 2 0 0 0
o) 3 0 0 3 2
o) o) o) 2 0 o)
2 2 0 2 3 2
o) o) o) o) 2 2


https://esajournals.onlinelibrary.wiley.com/doi/10.2307/2937193

Biological inference
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Biological inference

Observations States

non-detection o alive in site A
detection in site A e alive in site B

detection insite B e o dead



Biological inference

Observations States

non-detection o alive in site A
detection in site A alive in site B

detection in site B o dead



Biological inference

Observations States

non-detection alive in site A

detection in site A alive in site B

detection in site B dead



The model construction: How we should think.

States Observations

alive in site A o e non-detection

alive in site B ° e detection in site A

dead ° e detection in site B



The model construction: How we should think.

States Observations

non-detection

alive in site A °

alive in site B e detection in site A

dead e detection in site B



The model construction: How we should think.

States Observations

alive in site A non-detection

alive in site B ° detection in site A

dead e detection in site B



The model construction: How we should think.

States Observations

alive in site A non-detection

alive in site B detection in site A

dead detection in site B



HMM model for dispersal with 2 sites (drop Carolinas)

Transition matrix

¢a(1 —Yap) Pa¥aB 1 — ¢4
I' = ®BYBA ¢B(1 —vYpa) 1—¢nB
0 0 1



HMM model for dispersal with 2 sites (drop Carolinas)

Observation matrix



HMM model for dispersal with 2 sites (drop Carolinas)

Observation matrix

l—psa D4 0 2= A
Q= 1—pgB 0 DB 2z = B
1 0 0 ze =D

Note: You may code non-detections as y; = 2, and the first column in the observation
matrix should go last.



Our model (QbA, QbBa wABa 1/}BA7 PA, pB)

multisite <- nimbleCode({

# Parameters:

# phiA: survival probability site A

# phiB: survival probability site B

# psiAB: movement probability from site A to site B
# psiBA: movement probability from site B to site A
# pA: recapture probability site A

# pB: recapture probability site B

States (z):

1 alive at A

2 alive at B

3 dead

Observations (y):

1 not seen

2 seen at A

3 seen at B

HoW R K W R KR R W

S



Our model (QbA, QbBa wAB7 wBAa PA, pB)

multisite <- nimbleCode({

phiA ~ dunif (@,
phiB ~ dunif (@,
psiAB ~ dunif(9,
psiBA ~ dunif(9,
pA ~ dunif(@, 1)
pB ~ dunif(@, 1)



Our model (QbA, QbBa '(pAB) ¢BA7 PA, pB)

multisite <- nimbleCode({

delta[1] <- piA
delta[2] <- 1 - piA
delta[3] <- ©

o Actually, initial state is known exactly. It is alive at site of initial capture, and 7 4 is just
the proportion of individuals first captured in site A, no need to estimate it.

e Insteadofz[i, first[i]] ~ dcat(delta[1:3]),usez[i,first[i]] <-
y[i,first[i]]-1 instead in the likelihood.

e Same trick applies to CJS models.



Our model (QbA, QbBa wAB7 77DBA) PA, pB)

multisite <- nimbleCode({

# probabilities of state z(t+1) given z(t)
# (read as gamma[z(t),z(t+1)] = gamma[fromState, toState])

gamma[1,1] <- phiA * (1 - psiAB)
gamma[1,2] <- phiA * psiAB
gamma[1,3] <- 1 - phiA
gamma[2,1] <- phiB * psiBA
gamma[2,2] <- phiB * (1 - psiBA)
gamma[2,3] <- 1 - phiB
gamma[3,1] <- ©

gamma[3,2] <- ©

gamma[3,3] <- 1



Our model (QbA, QbBa wABa 1/}BA7 PA, pB)

multisite <- nimbleCode({

# probabilities of y(t) given z(t)
= omega[Observation, State])

# (read as omegaly(t),z(t)]

omegal1,1]
omegal[1,2]
omegal[1, 3]
omegal[2,1]
omegal[2,2]
omegal[2,3]
omegal[3, 1]
omegal[3,2]
omegal[3, 3]

<- 1 - pA
<- pA

<- 0

<- 1 - pB
<- 0

<- pB

<- 1

<- 0

<- 0

HOoFH R O R R R R

Pr(alive
Pr(alive
Pr(alive
Pr(alive
Pr(alive
Pr(alive
Pr(dead t ->
Pr(dead t ->
Pr(dead t ->

O I >> >
~ 4 4 4 4 ~+

-> non-detected t)
-> detected A t)
-> detected B t)
-> non-detected t)
-> detected A t)
-> detected B t)
non-detected t)
detected A t)
detected B t)



Our model (QbA, QbBa wAB7 ¢BA7 PA, pB)

multisite <- nimbleCode({

# likelihood
for (i in 1:N){
# latent state at first capture
z[i,first[i]] <- y[i,first[i]] - 1
for (t in (first[i]+1):K){
# z(t) given z(t-1)
z[i,t] ~ dcat(gamma[z[i,t-1],1:3])
# y(t) given z(t)
y[i,t] ~ dcat(omegalz[i,t],1:3])
}
}
1)



mean
.93
.40
.60
.69
.27
.07

O 0O 0O OO O

O 0O 0O OO O

sd

.09
.04
.05
.04
.06
.02

OO OO OON

. 9%
.36
.32
. 90
.62
.16
.04

O OO

S50% 97.
.73
.48
.71
.76
.40
.12

.92
.40
.60
.69
.26
.07

O OO

5%

Rhat n.eff

.04
.07
.01
.04
.04
.03

—_— ) ) )

122
165
195
199
244
360



pB ————
phiA —
phiB ———
psSiAB ———————
psSiBA -
! ! ! ! ! ! !
-0.2 0.0 0.2 0.4 0.6 0.8 1.0
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What if there are three sites?

e The transition probabilities still need to be between O and 1.

e Another constraint is that the sum of three probabilities of departure from a given
site should be one.

e Two methods to fulfill both constraints.

o Dirichlet prior
o Multinomial logit link



Dirichlet prior with parameter alpha

alpha=c(1,1,1) alpha =c(1, 2, 2)




Nimble implementation of the Dirichlet prior

multisite <- nimbleCode({

# transitions: Dirichlet priors

psiA[1:3] ~ ddirch(alpha[1:3]) # psiAA, psiAB, psiAC
psiB[1:3] ~ ddirch(alphal[1:3]) # psiBA, psiBB, psiCC
psiC[1:3] ~ ddirch(alpha[1:3]) # psiCA, psiCB, psiCC



Nimble implementation of the Dirichlet prior

multisite <- nimbleCode({

# probabilities of state z(t+1) given z(t)
gamma[1,1] <- phiA * psiA[1]

gamma[1,2] <- phiA * psiA[2]

gamma[1,3] <- phiA * psiA[3]

gamma[1,4] <- 1 - phiA

gamma[2,1] <- phiB * psiB[1]

gamma[2,2] <- phiB * psiB[2]

gamma[2,3] <- phiB * psiB[3]

gamma[2,4] <- 1 - phiB

gamma[3,1] <- phiC * psiC[1]

gamma[3,2] <- phiC * psiC[2]

gamma[3,3] <- phiC * psiC[3]

gamma[3,4] <- 1 - phiC

gamma[4,1] <- ©

gamma[4,2] <-
gamma[4,3] <-
gamma[4,4] <-

00
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Multinomial logit

Say we have P sites or states.

e Specify a normal prior distribution for P — 1 transition parameters ;. These
probabilities are on the multinomial logit scale, possibly function of covariates.

To back-transform these parameters, we use:

exp(a;
B = p( J) ,j=1,...,P—1

P
1+ Z exp(ay)
p=1

This ensures that all 5; are between O and 1, and their sumis 1.

P-1
Last parameter is calculated as the complement Bp = 1 — Z exp(ﬁj)
j=1



Nimble implementation of the Dirichlet prior

multisite <- nimbleCode({

# transitions: multinomial logit
# normal priors on logit of all but one transition probs
for (i in 1:2){

lpsiA[i] ~ dnorm(@, sd = 1000)
lpsiB[i] ~ dnorm(@, sd = 1000)
lpsiC[i] ~ dnorm(@, sd = 1000)

b

# constrain the transitions such that their sum is < 1

for (i in 1:2){
psiA[i] <- exp(lpsiA[i]) / (1 + exp(lpsiA[1]) + exp(lpsiA[2]))
psiB[i] <- exp(lpsiB[i]) / (1 + exp(lpsiB[1]) + exp(lpsiB[2]))
psiC[i] <- exp(lpsiC[i]) / (1 + exp(lpsiC[1]) + exp(lpsiC[2]))

}

# last transition probability

psiA[3] <- 1 - psiA[1] - psiA[2]

psiB[3] <- 1 - psiB[1] - psiB[2]

psiC[3] <- 1 - psiC[1] - psiC[2]



Nimble implementation of the Dirichlet prior

multisite <- nimbleCode({

# probabilities of state z(t+1) given z(t)
gamma[1,1] <- phiA * psiA[1]

gamma[1,2] <- phiA * psiA[2]

gamma[1,3] <- phiA * psiA[3]

gamma[1,4] <- 1 - phiA

gamma[2,1] <- phiB * psiB[1]

gamma[2,2] <- phiB * psiB[2]

gamma[2,3] <- phiB * psiB[3]

gamma[2,4] <- 1 - phiB

gamma[3,1] <- phiC * psiC[1]

gamma[3,2] <- phiC * psiC[2]

gamma[3,3] <- phiC * psiC[3]

gamma[3,4] <- 1 - phiC

gamma[4,1] <- ©

gamma[4,2] <-
gamma[4,3] <-
gamma[4,4] <-

00
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Live demo




Sites may be states.



Examples of multistate models

Epidemiological or disease states: sick/healthy, uninfected/infected/recovered.

e Morphological states: small/medium/big, light/medium/heavy.

Breeding states: e.g. breeder/non-breeder, failed breeder, first-time breeder.

o Developmental or life-history states: e.g. juvenile/subadult/adult.

Social states: e.g. solitary/group-living, subordinate/dominant.

Death states: e.g. alive, dead from harvest, dead from natural causes.

States = individual, time-specific categorical covariates.






Sooty shearwaters and life-history tradeoffs

e We consider data collected between 1940 and 1957 by Lance Richdale on Sooty
shearwaters (aka titis).

e These data were reanalyzed with multistate models by Scofield et al. (2001) who
kindly provided us with the data.

¢ Following the way the data were collected, four states were originally considered:

o Alive breeder;

o Accompanied by another bird in a burrow;
o Alonein a burrow;

o On the surface;

o Dead.


https://link.springer.com/article/10.1198/108571101750524607

Sooty shearwaters and life-history tradeoffs

e Because of numerical issues, we pooled all alive states but breeder together in a non-
breeder state (NB) that includes:

o failed breeders (birds that had bred previously - skip reproduction or divorce) and
pre-breeders (birds that had yet to breed).

o Note that because burrows were not checked before hatching, some birds in the
category NB might have already failed.

o We therefore regard those birds in the B state as successful breeders, and those
in the NB state as nonbreeders plus prebreeders and failed breeders.

e Observations are non-detections, and detections as breeder and non-breeder

e Does breeding affect survival? Does breeding in current year affect breeding next
year?



year_1942 year_1943 year_1944 year_1949 year 1952 year_1953 year_1956
0 0 0 0 0 0

o O O O O O o
O O O O O O o
© O O O O O O
© O O O O O O
© O O O O O O
© O O O O O O
S N =N



HMM model for transition between states

Transition matrix

L a=B #=NB  a=D
¢B(1 — Y¥BNB) ®BYBNB 1 — ¢3B ) 2 1=DB
I' = ONBYNBB ¢nB(1 —¢YnBB) 1— ¢NB 21 =NB
0 0 1 ze1 =D

e Costs or reproduction would reflect in future reproduction
Y =1 — vYpnp < Ynpporsurvival pp < dnB.



HMM model for transition between states

Observation matrix

_____ =0 wm=1 =2
1 —ps pB 0
=1 1-pns 0 DNB
1 0 0



Our model (quB, ®B, YNBB, YBNB, PNB, PB)

multistate <- nimbleCode({

# Parameters:

# phiB: survival probability state B

# phiNB: survival probability state NB

# psiBNB: transition probability from B to NB
# pSINBB: transition probability from NB to B
# pB: recapture probability B

# PNB: recapture probability NB

States (z):

1 alive B

2 alive NB

3 dead

Observations (y):

1 not seen

2 seen as B

3 seen as NB

HoW R K W R KR R W

S



Our model (quB, ®B, YNBB, YBNB, PNB, PB)

multistate <- nimbleCode({

phiB ~ dunif(6, 1)
phiNB ~ dunif (6, 1)
psiBNB ~ dunif (0, 1
psiNBB ~ dunif (0, 1
pB ~ dunif(@, 1)

1

pNB ~ dunif(0, 1)



Our model (quB, ®B, YNBB, YBNB, PNB, PB)

multistate <- nimbleCode ({

# probabilities of state z(t+1) given z(t)
gamma[1,1] <- phiB * (1 - psiBNB)
gamma[1,2] <- phiB * psiBNB

gamma[1,3] <- 1 - phiB

gamma[2,1] <- phiNB * psiNBB

gamma[2,2] <- phiNB * (1 - psiNBB)
gamma[2,3] <- 1 - phiNB

gamma[3,1] <- ©

gamma[3,2] <- ©

gamma[3,3] <- 1



Our model (quB, ®B, YNBB, YBNB, PNB, PB)

multistate <- nimbleCode ({

# probabilities of y(t) given z(t)

omegal[1,1]
omegal1,2]
omegal[1, 3]
omegal[2,1]
omegal[2,2]
omegal[2, 3]
omegal[3, 1]
omegal[3,2]
omegal[3, 3]

<- 1 - pB
<- pB

<- 0

<- 1 - pNB
<- 0

<- pNB

<- 1

<- 0

<- 0

R R TR R R NS N S

Pr(alive B t -> non-detected t)
Pr(alive B t -> detected B t)
Pr(alive B t -> detected NB t)
Pr(alive NB t -> non-detected t)
Pr(alive NB t -> detected B t)
Pr(alive NB t -> detected NB t)
Pr(dead t -> non-detected t)
Pr(dead t -> detected N t)
Pr(dead t -> detected NB t)



Our model (quB, ®B, YNBB, YBNB, PNB, PB)

multistate <- nimbleCode ({

# likelihood
for (i in 1:N){
# latent state at first capture
z[i,first[i]] <- y[i,first[i]] - 1
for (t in (first[i]+1):K){
# z(t) given z(t-1)
z[i,t] ~ dcat(gamma[z[i,t-1],1:3])
# y(t) given z(t)
y[i,t] ~ dcat(omegalz[i,t],1:3])

})



mean sd 2.5% 50% 97.5% Rhat n.eff
pB 0.60 0.03 0.54 0.59 ©0.66 1.00 202
pPNB .57 .03 0.51 .57 ©0.62 1.01 281
phiB ©.80 0.02 .77 .80 ©0.83 1.01 313
phiNB ©0.85 0.02 0.82 0.85 ©.88 1.00 404
PsiBNB 0.25 0.02 0.21 0.25 ©.30 1.00 434
psiNBB 0.24 0.02 0.20 0.24 ©0.29 1.03 478
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Multistate models are very flexible

e Access toreproduction
e Temporary emigration

e Combination of life and dead encounters



Access to reproduction

Transition matrix:

z2=J 2zz=1yNB z =2yNB 2z =B 2z =D

/ 0 $1(1 — o) 0 dar  1— \ 21 =J

0 0 ¢2(1 — Ozz) ¢20¢2 1 — ¢2 Zt—1 = 1yNB

I'= 0 0 0 b3 1—¢3 | z-1=2yNB
0 0 0 OB 1— ¢p zt1 =B
K 0 0 0 0 1 ) zt1 =D

e First-year and second-year individuals breed with probabilities a1 and as.

e Then, everybody breeds from age 3.



Access to reproduction

Observation matrix:

e Juveniles are never detected.

2zt = 1yNB

zt = 2yNB
zt = B
ze = D



Temporary emigration

Transition matrix:

z; = In z; = out zz =D
¢(1 — win—mut) wain—mut 1— gb Z¢—1 = 1n
I' = qbzpout%in ¢(1 T wout—ﬁn) 1— qb Zt—1 — out
0 0 1 Zt—1 — D

Observation matrix:
=0 =1
1—0p P z; = 1n
Q= ( 1 0 z; = out



Combination of life and dead encounters

Transition matrix

S 1—s 0 z;—1 = alive
I' = 0 0 1 z_1 = just dead
0 0 1 z;—1 = dead for good

Observation matrix



Issue of local minima

e Simulated data
o 2 sites or states, and 7 occasions
o Survival ¢ = 1, detectionp = 0.6
o Transition 112 = 0.6
o Transition y9; = 0.85

e Courtesy of Jéréome Dupuis, used in Gimenez et al. (2005).


https://oliviergimenez.github.io/pubs/Gimenezetal2005JABES.pdf

Data

V1 V2 V3 V4 V5 V6 V7

2 0 2 1 2 0 2
2 0 2 1 2 0 2
2 0 2 1 2 0 2
2 0 2 1 2 0 2
1 11 0 1 O0 1

1 11 0 1 O 1

1 11 0 1 O0 1

1 11 0 1 O0 1



Deviance as a function of transition 2->1
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Initial values lead to local minimum
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Initial values lead to global minimum
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Further reading

e Lebreton, J-D., J. D. Nichols, R. J. Barker, R. Pradel and J. A. Spendelow (2009).
Modeling Individual Animal Histories with Multistate Capture-Recapture Models.
Advances in Ecological Research,41:87-173.


https://multievent.sciencesconf.org/conference/multievent/pages/Lebretonetal2009AER.pdf
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Known knowns, unknown knowns and
unknowns: Uncertainty in state assignment

The team

last updated: 2021-05-18



Uncertainty in state assignment

Multievent models extend multistate models with uncertainty in state assignment
e Breeding status in female roe deer is ascertained based on fawn detection
e Sex statusis ascertained based on morphological criteria in Audouin's gulls
e Disease status in house finches is ascertained based on birds' eyes examination
e Hybrid status in wolves is ascertained based on genetics
e Dominance status in wolves is ascertained based on heterogeneity in detection
We need to explicitly consider state assignment in a model

HMMs to the rescue!



Examples

e Testing life-history trade-offs while accounting for uncertainty in breeding status
e Quantifying disease dynamics while accounting for uncertainty in disease status

e Estimating survival while accounting for individual heterogeneity in detection



Examples

e Testing life-history trade-offs while accounting for uncertainty in breeding status
e Quantifying disease dynamics while accounting for uncertainty in disease status

e Estimating survival while accounting for individual heterogeneity in detection






Uncertainty in breeding status

e 3states

o breeding (B)
o non-breeding (NB)
o dead (D)

e 4 observations

o not encountered (0O)

o found, ascertained as breeder (1)

o found, ascertained as non-breeder (2)
o found, status unknown (3)



How states generate observations

States Observations
breeding e e not encountered (0)
non-breeding e e found, ascertained as breeder (1)
dead e e found, ascertained as non-breeder (2)

e found, status unknown (3)



How states generate observations

States Observations

breeding e not encountered (0)

non-breeding e e found, ascertained as breeder (1)

dead

e found, ascertained as non-breeder (2)

e found, status unknown (3)



How states generate observations

States Observations
breeding not encountered (0)
non-breeding e found, ascertained as breeder (1)
dead e e found, ascertained as non-breeder (2)

found, status unknown (3)



How states generate observations

States Observations
breeding e not encountered (0)
non-breeding e found, ascertained as breeder (1)
dead e found, ascertained as non-breeder (2)

found, status unknown (3)



How states generate observations

States Observations

breeding e----- 2 not encountered (0)

\

v 7/
/
?

non-breeding ¢ ./ ¢ found, ascertained as breeder (1)

\ \
\ \\
\

dead "\ found, ascertained as non-breeder (2)

» found, status unknown (3)



HMM model for breeding states with uncertainty

Vector of initial state probabilities

e g isthe probability that a newly encountered individual is a breeder

e Ty = 1 — mpgisthe probability that a newly encountered individual is a non-
breeder



HMM model for breeding states with uncertainty

Transition matrix

L a=B #=NB  a=D
¢B(1 — Y¥BNB) ®BYBNB 1 — ¢3B 2 1=DB
I' = ONBYNBB ¢nB(1 —¢YnBB) 1— ¢NB 21 =NB
0 0 1 ze1 =D

e ¢pisbreeder survival, ¢ yp that of non-breeders.

e 1Ypnpisthe probability for anindividual breeding a year to be a non-breeder the next
year.

* Yngg isthe probability for an non-breeder individual to breeder the next year.



HMM model for breeding states with uncertainty

Observation matrix

_____ p=0 w=1 wn=2  w=3
1—-pp pBBB 0 pa(1 — BB) zz =B
Q=| 1—-pnB 0 pveBnB pnB(1—PfBnB) | 2:=NB
1 0 0 0 2z =D

e (Bpisthe probability to assign an individual in state B to state B.
e Bnpisthe probability to assign an individual in state NB to state NB.

e ppgisthe detection probability of breeders, py g that of non-breeders.



HMM model for breeding states with uncertainty

Because animals are all captured, pp = pyp = 1 at first encounter:

=0 yu=1 n=2 y=3
0 BB 0 (]- — BB) Zt = B
0 0 By (1—PBnB) | 26=NB
1 0 0 0 2% =D

Note: Breeding assessment is unaffected.



Our model (¢, dNB, ¥YBNB, YNBB, PB, PNB, BB, BNB, T)

multievent <- nimbleCode ({

# Parameters:

# phiB: survival probability state B

# phiNB: survival probability state NB

# psiBNB: transition probability from B to NB

# pSINBB: transition probability from NB to B

# pB: recapture probability B

# PNB: recapture probability NB

# piB prob. of being in initial state breeder

# betaNB prob to ascertain the breeding status of an individual encountered as non-breeder
betaB prob to ascertain the breeding status of an individual encountered as breeder

H W

States (z):

1 alive B

2 alive NB

3 dead

Observations (y):

non-detected

seen and ascertained as breeder
seen and ascertained as non-breeder
not ascertained

=
I

FHOW OB R W W R KR W
N WN
n

%



Our model (¢, dNB, ¥YBNB, YNBB, PB, PNB, BB, BNB, T)

multievent <- nimbleCode({

phiB ~ dunif(6, 1)
phiNB ~ dunif (6, 1)
psiBNB ~ dunif (0, 1
psiNBB ~ dunif (0, 1
pB ~ dunif(@, 1)
pNB ~ dunif(0, 1)
piB ~ dunif(9, 1)
betaNB ~ dunif (@, 1)
betaB ~ dunif(@, 1)



Our model (¢, dNB, ¥YBNB, YNBB, PB, PNB, BB, BNB, T)

multievent <- nimbleCode ({

# vector of initial stats probs

delta[1] <- piB # prob. of being in initial state B
delta[2] <- 1 - piB # prob. of being in initial state NB
delta[3] <- O # prob. of being in initial state dead



Our model (¢, dNB, ¥YBNB, YNBB, PB, PNB, BB, BNB, T)

multievent <- nimbleCode ({

# probabilities of state z(t+1) given z(t)
gamma[1,1] <- phiB * (1 - psiBNB)
gamma[1,2] <- phiB * psiBNB

gamma[1,3] <- 1 - phiB

gamma[2,1] <- phiNB * psiNBB

gamma[2,2] <- phiNB * (1 - psiNBB)
gamma[2,3] <- 1 - phiNB

gamma[3,1] <- ©

gamma[3,2] <- ©

gamma[3,3] <- 1



Our model (¢, dNB, ¥YBNB, YNBB, PB, PNB, BB, BNB, T)

multievent <- nimbleCode ({

# probabilities of y(t) given z(t)

omega[1,1] <- 1 - pB Pr(alive B t -> non-detected t)
omega[1,2] <- pB * betaB Pr(alive B t -> detected B t)
omega[1,3] <- © Pr(alive B t -> detected NB t)
omegal[1,4] <- pB * (1 - betaB) Pr(alive B t -> detected U t)

Pr(alive NB t -> non-detected t)
Pr(alive NB t -> detected B t)
Pr(alive NB t -> detected NB t)
Pr(alive NB t -> detected U t)
Pr(dead t -> non-detected t)
Pr(dead t -> detected N t)
Pr(dead t -> detected NB t)
Pr(dead t -> detected U t)

omega[2,1] <- 1 - pNB

omegal[2,2] <- ©

omegal[2,3] <- pNB * betaNB
omegal[2,4] <- pNB * (1 - betaNB)
omegal[3,1] <- 1

omegal[3,2] <- ©

omega[3,3] <- ©

omega[3,4] <- ©

FHroH R oW R R R W™ R R R W



Our model (¢, dNB, ¥YBNB, YNBB, PB, PNB, BB, BNB, T)

multievent <- nimbleCode ({

# probabilities of y(first) given z(first)

omega.init[1,1] <- © # Pr(alive Bt = 1 -> non-detected t = 1)
omega.init[1,2] <- betaB # Pr(alive Bt = 1 -> detected Bt = 1)
omega.init[1,3] <- © # Pr(alive Bt = 1 -> detected NB't =1)
omega.init[1,4] <- 1 - betaB # Pr(alive Bt = 1 -> detected U t = 1)
omega.init[2,1] <- © # Pr(alive NB t = 1 -> non-detected t = 1)
omega.init[2,2] <- © # Pr(alive NB t = 1 -> detected Bt = 1)
omega.init[2,3] <- betaNB # Pr(alive NB t = 1 -> detected NB t = 1)
omega.init[2,4] <- 1 - betaNB # Pr(alive NB t = 1 -> detected U t = 1)
omega.init[3,1] <- 1 # Pr(dead t = 1 -> non-detected t = 1)
omega.init[3,2] <- © # Pr(dead t = 1 -> detected N t = 1)
omega.init[3,3] <- © # Pr(dead t = 1 -> detected NB t = 1)
omega.init[3,4] <- © # Pr(dead t = 1 -> detected U t = 1)



Our model (¢, dNB, ¥YBNB, YNBB, PB, PNB, BB, BNB, T)

multievent <- nimbleCode ({

# likelihood
for (i in T:N){
# latent state at first capture
z[i,first[i]] ~ dcat(delta[1:3])
y[i,first[i]] ~ dcat(omega.init[z[i,first[i]],1:4])
for (t in (first[i]+1):K){
# z(t) given z(t-1)
z[i,t] ~ dcat(gamma[z[i,t-1],1:3])
# y(t) given z(t)
y[i,t] ~ dcat(omegal[z[i,t],1:4])

1)



Results

mean
betaB 0.19
betaNB 0.76
pB 0.56
PNB 0.60
phiB 0.81
phiNB ©0.84
piB 0.71
PsiBNB 0.23
PsSiNBB 0.25

OO OO OO OO

sd

.01
.05
.03
.04
.02
.02
.03
.02
.04

O OO OO ODN

. 9%
.16
.66
.91
.93
.78
. 80
.66
.18
17

OO OO OOoO OO

50% 97

.19
.76
. 96
.60
.81
.84
.71
.22
.25

O 0O OO0 OO O

.5% Rhat n.eff

21 1.
.01
.06
.03
.01
.00
.02
.00
.00

.86
.62
.67
.85
.87
.76
.27
.34

e Breeders are difficult to assigned to the correct state.

e Non-breeders are relatively well classified as non-breeders.

1

—_— ) ) e A A

01

332

65
229
142
312
354
115
214

95

e No cost of breeding, neither on survival, nor on future reproduction.
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Examples

e Testing life-history trade-offs while accounting for uncertainty in breeding status
¢ Quantifying disease dynamics while accounting for uncertainty in disease status

e Estimating survival while accounting for individual heterogeneity in detection



Animal epidemiology with uncertain disease states

e We consider a system of an emerging pathogen Mycoplasma gallisepticum Edward and
Kanarek and its host the house finch, Carpodacus mexicanus Miiller.
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Animal epidemiology with uncertain disease states

e We consider a system of an emerging pathogen Mycoplasma gallisepticum Edward and
Kanarek and its host the house finch, Carpodacus mexicanus Miiller.

e Faustino et al. (2004) and Conn & Cooch (2009) studied impact of pathogen on host
demographic rates.

e Problem is true disease state for some encountered individuals is ambiguous because
seen at distance.

¢ |nthis context, how to study the dynamics of the disease?


https://besjournals.onlinelibrary.wiley.com/doi/10.1111/j.0021-8790.2004.00840.x
https://besjournals.onlinelibrary.wiley.com/doi/full/10.1111/j.1365-2664.2008.01597.x

States and observations

e 3states

o healthy (H)
o ll (l)
o dead (D)

e 4 observations

o not seen (0)

o captured healthy (1)

o capturedill (2)

o health status unknown, i.e. seen at distance (3)



How states generate observations.

States Observations

healthy e e not seen (0)

il e captured healthy (1)

dead e

captured ill (2)

e status unknown (3)
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How states generate observations.

States Observations

healthy e .» not seen (0)

i e captured healthy (1)
dead e e captured ill (2)

% status unknown (3)



How states generate observations.

States

healthy

dead
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Observations

» not seen (0)

captured healthy (1)

captured ill (2)

% status unknown (3)



How states generate observations.

States Observations

healthy e:----------» not seen (0)

ill T captured healthy (1)

dead N\ e capturedill (2)

% status unknown (3)



HMM model for disease states with uncertainty

Vector of initial state probabilities

o 1y isthe probability that a newly encountered individual is healthy.

o m; = 1 — my is the probability that a newly encountered individual is ill.



HMM model for disease states with uncertainty

Transition matrix

¢ (1 — Ymur) OHVHI 1 — o¢n zi1=H
PrYru ¢r(1 —vrr) 1—¢r zi1=1
0 0 1 Zt—1 — D

r

e ¢ isthe survival probability of healthy individuals, ¢ that of ill individuals.

e gy isthe probability of getting sick, 17 that of recovering from the disease.



HMM model for disease states with uncertainty

Transition matrix, incurable disease

dg(1 —vgr) ég¥mr 1—odg \ 21 =H
' = 0 b1 1—¢r | ma=1I
0 0 1 Zt—1 = D

* No possibility of recovering from the disease, that is 1y = 0. Once you get sick, you
remainsick Yy =1 — 1Yy = 1.

e For analysing the house finch data, we allow recovering from the disease, and we will
use transition matrix from previous slide.



HMM model for disease states with uncertainty

Observation matrix

2= 1 —pg 0 prBr  pr(1— Br) ze =1
1 0 0 0 ze =D

e [y isthe probability to assign a healthy individual to state H.

e [risthe probability to assign a sick individual to state I.

e pg isthe detection probability of healthy individuals, py that of sick individuals.



Results

mean sd 2.5% 50% 97.5% Rhat n.eff
betaH 06.99 0.61 ©0.97 0.99 1.60 1.61 1421
betal 0.65 0.01 0.63 0.65 ©0.068 1.00 6477
pH ©.17 .02 ©.13 0.17 ©0.22 1.01 331
pI ©.58 .16 0.41 .57 ©.80 1.04 220
phiH ©0.88 0.02 0.84 6.88 ©0.92 1.01 360
phiI ©.99 0.01 0.96 6.99 1.00 1.00 1004
pi ©.96 .01 .93 .96 ©.98 1.00 4190
psiHI 0.22 0.04 0.16 6.22 ©.32 1.02 311
psiIH 0.46 0.08 0.32 6.45 ©0.63 1.02 392

e Healthy individuals are correctly assigned, while infected individuals are difficult to
ascertain.

e Sounds like being infected has an effect on detection and survival. Run models
without effects and compare with WAIC for formal testing.

e Infectionrateis 22%, recovery rate is 46%.
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Examples

e Testing life-history trade-offs while accounting for uncertainty in breeding status
e Quantifying disease dynamics while accounting for uncertainty in disease status

e Estimating survival while accounting for individual heterogeneity in detection



Individual heterogeneity with finite mixtures.

e Gray wolf is a social species with hierarchy in packs which may reflect in species
demography.






Individual heterogeneity with finite mixtures.

e Gray wolf is a social species with hierarchy in packs which may reflect in demography.

e Shirley Pledger in a series of papers developed heterogeneity models in which
individuals are assigned in two or more classes with class-specific survival/detection
probabilities.

e Cubayneset al. (2010) used HMMs to account for heterogeneity in the detection
process due to social status, see also Pradel et al. (2009).


https://conbio.onlinelibrary.wiley.com/doi/abs/10.1111/j.1523-1739.2009.01431.x
https://link.springer.com/chapter/10.1007%2F978-0-387-78151-8_36

Individual heterogeneity

e 3states

o aliveinclass 1 (A1)

o aliveinclass 2 (A2)
o dead (D)

e 4 observations

o not captured (0)
o captured (1)



HMM model for individual heterogeneity

Vector of initial state probabilities

e 7isthe probability of being alive in class 1.

e 1 — misthe probability of beingin class 2.



HMM model for individual heterogeneity

Transition matrix

¢ 0 1—¢ Zt_le]_
T = 0 ¢ 1—¢ | 1= A2
0 0 1 21 =D

e ¢isthe survival probability, which could be made heterogeneous.



HMM model for individual heterogeneity

Transition matrix, with change in heterogeneity class

¢(1 — 912) P12 1—¢ 2z 1 = Al
= PP P(l—tn) 1-¢ | 21 =42
0 0 1 Zt—1 — D

e )19 is the probability for an individual to change class of heterogeneity, from 1 to 2.

* 19 is the probability for an individual to change class of heterogeneity, from 2 to 1.



HMM model for individual heterogeneity

Observation matrix

¥ =0 wn=1
l-p1 ¢ ze = Al
= 1 — po Do zy = A2
1 0 zi =D

e p1 is detection for individuals in class 1, and p» that of individuals in class 2.



Results

mean sd 2.5% 50% 97.5% Rhat n.eff
pl ©.38 ©.09 ©0.23 0.38 ©0.56 1.04 210
p2 ©.50 0.12 0.25 06.560 ©0.73 1.01 229
phi 6.81 06.05 ©0.71 6.81 ©.91 1.04 317
pi ©0.62 0.12 0.36 0.63 ©0.83 1.02 164

We have lowly detectable individuals (class A1 with p1) in proportion 62%.

And highly (or so) detectable individuals (class A2 with ps) in proportion 38%.

N ote that interpretation of classes is made a posteriori.

Survival is 81%.
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HMM model for individual heterogeneity

e You may consider more classes, and select among models, see Cubaynes et al. (2012).

e You may also go for a non-parametric approach and let the data tell you how many
classes you need. This is relatively easy to do in Nimble, see Turek et al. (2021).

e More about individual heterogeneity in Gimenez et al. (2018).


https://oliviergimenez.github.io/pubs/Cubaynesetal2011MEE.pdf
https://arxiv.org/abs/2007.10163
https://oliviergimenez.github.io/pubs/GimenezCamGaillard2017Oikos.pdf

HMMs to analyse capture-recapture data

With the same data, ask further questions, just consider different states.
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How to make our models remember?

e So far, the dynamics of the states are first-order Makovian.

e The site where you will be depends only on the site where you are, and not on the
sites you were previously.

e How to relax this assumption, and go second-order Markovian?

e Memory models were initially proposed by Hestbeck et al. (1991) and Brownie et al.
(1993), then formulated as HMMs in Rouan et al. (2009). See also Cole et al. (2014).


https://esajournals.onlinelibrary.wiley.com/doi/abs/10.2307/2937193
https://www.jstor.org/stable/2532259?origin=crossref&seq=1#metadata_info_tab_contents
https://link.springer.com/article/10.1198/jabes.2009.06108
https://onlinelibrary.wiley.com/doi/10.1002/ece3.1037

Remember HMM model for dispersal between 2 sites

Transition matrix

oa=A #=B ua=D
¢4(1 —YaB) PV aB 1—¢s \ z.1=4
I' = ®BYBA ¢B(l —¢Ypsa) 1—¢B | 2.1 =B
0 0 1 21 =D

Observation matrix

l1—pa pa 0 z=A
= ].—pB 0 PB Zt:B
1 0 0 Zt:_D



HMM formulation of the memory model

e To keep track of the sites previously visited, the trick is to consider states as being
pairs of sites occupied

e States

o AAisforaliveinsite Aattandaliveinsite Aatt — 1
o ABisfor aliveinsite AattandaliveinsiteBatt — 1
o BAisforaliveinsite Battandaliveinsite Aatt — 1
(@)
(@)

BB is for aliveinsite Battand aliveinsiteBatt — 1
D is for dead

e Observations
o 0 not captured
o 1 captured at site A
o 2 captured at site B



HMM formulation of the memory model

Vector of initial state probabilities

Zt:AA Zt:AB Zt:BA Zt:BB Zt:.D

e wherempg =1 — (w44 + TaB + TBA),

e and m;; at site j when first captured att and sitez at ¢ — 1.



HMM formulation of the memory model

Transition matrix

Zt:AA Zt:AB Zt:BA Zt:BB Zt:.D
/ ba44 ®AAB 0 0 1_¢AAA_¢AAB\ v — AA
0 0 ®ABA 4B 1 — dapa — daBB 2z = AB
I' = PBAA $BAB 0 0 1 — ¢pas — dpap | 2+ = BA
0 0 $BBA ¢Bee 1 — ¢BBA — ®BBB 2t = BB
\ 0 0 0 0 1 ] 4 =D

J ¢ijk is probability to be in site k at time ¢t + 1 for an individual present in site jat ¢
andinsitezatt — 1



HMM formulation of the memory model

Transition matrix, alternate parameterization

z = AA z; = AB z; = BA zz=BB z =D
/ ¢haaa (1 —aaa) 0 0 l1-9¢
0 0 ¢(1 —app) PYapp 1-—9
I' = ¢vpaa  H(1 —1Ypaa) 0 0 1-09¢
0 0 ¢(1 —vYppe) ¥ 1—¢
K 0 0 0 0 1

e ¢ isthe probability of surviving from one occasion to the next.

)

/

z = AA
z; = AB
z; = BA
z = BB
z = D

e 1);;; is the probability an animal stays at the same site j given that it was at site 7 on

the previous occasion.



HMM formulation of the memory model
Observation matrix

( 1 —pag bA 0 \ 2zt = AA
1 — pg 0 PB z; = AB
(1= 1—pA y oy 0 Zt:BA




Further reading

e Seminal paper by Pradel (2005) Multievent: An Extension of Multistate Capture-
Recapture Models to Uncertain States. Biometrics, 61: 442-447.

e Dupuis (1995) had a similar idea for the Arnason-Schwarz model: Dupuis, J. (1995)

Bayesian estimation of movement and survival probabilities from capture-recapture
data. Biometrika. Vol. 82, pp 761-772.

e See also for areview Gimenez et al. (2012) Estimating demographic parameters using
hidden process dynamic models. Theoretical Population Biology 82: 307-316.


https://onlinelibrary.wiley.com/doi/abs/10.1111/j.1541-0420.2005.00318.x
https://academic.oup.com/biomet/article-abstract/82/4/761/252161
https://oliviergimenez.github.io/pubs/Gimenezetal2012TPB.pdf
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Skip your coffee break: Speed up MCMC
convergence

The team

last updated: 2021-05-12



Our nimb1le workflow so far

Model written in R model If using only defaults:
BUGS language, imbleModel o ~ nimbleMCMC()
data, —> nimpolelvioae () similar behavior as jags() from R2jags package
inits, constants Object containing the model, data,

constants, and initial conditions

Samples

Adapted from L. Ponisio



But nimb1le gives full access to the MCMC engine

Model written in R model If using only defaults:
BUGS language, imbleModel o ~ nimbleMCMC()
data, —> nimpleiviode () similar behavior as jags() from R2jags package
inits, constants Object containing the model, data,

constants, and initial conditions

i Can skip configuration step
if using defaults

MCMC configuration
Monitors,
Thinning, = configureMCMC()

Sampler choices
Add/remove samplers and customize MCMC

specifications, or use defaults

'

Single chain:

Uncompiled MCMC Compiled MCMC & run method ($run(niter))

_— Samples

1 or more chains:
runMCMC()

buildMCMC() model

compileNimble()

burnin
nchains

Credit: L. Ponisio



Steps to use NIMBLE at full capacity

1. Build the model. It is an R object.
2. Build the MCMC.

3. Compile the model and MCMC.
4. Run the MCMC.

5. Extract the samples.

e nimbleMCMC does all of this at once.



Back to CJS models with Dipper data.



Define model

hmm.phip <- nimbleCode({

delta[1] <- 1 # Pr(alive t = 1) =1
delta[2] <- © # Pr(dead t = 1) = 6
phi ~ dunif(@, 1) # prior survival
gamma[1,1] <- phi # Pr(alive t -> alive t+1)
gamma[1,2] <- 1 - phi # Pr(alive t -> dead t+1)
gamma[2,1] <- © # Pr(dead t -> alive t+1)
gamma[2,2] <- 1 # Pr(dead t -> dead t+1)
p ~ dunif(@, 1) # prior detection
omegal[1,1] <- 1 - p # Pr(alive t -> non-detected t)
omegal[1,2] <- p # Pr(alive t -> detected t)
omegal[2,1] <- 1 # Pr(dead t -> non-detected t)
omegal[2,2] <- © # Pr(dead t -> detected t)

# likelihood
for (i in 1:N){
z[i,first[i]] ~ dcat(delta[1:2])
for (j in (first[i]+1):T){
z[i,j] ~ dcat(gamma[z[i,j-1], 1:2])
y[i,j] ~ dcat(omegal[z[i,j], 1:2])
}
}
})



Run and summarise

mcme.phip <- nimbleMCMC(code = hmm.phip,
constants = my.constants,
data = my.data,
inits = initial.values,
monitors = parameters.to.save,
niter = n.iter,
nburnin n.burnin,
nchains = n.chains)

MCMCsummary(object = mcmc.phip, round = 2)

mean sd 2.5% 50% 97.5% Rhat n.eff
p ©0.90 0.03 0.83 0.90 ©0.95 1.00 286
phi 0.56 ©0.62 6.51 .56 ©0.61 1.02 541



Detailed Nimble workflow



1. Build the model (R object)

hmm.phip <- nimbleModel(code = hmm.phip,
constants = my.constants,
data = my.data,
inits = initial.values())

defining model. ..
building model. ..
setting data and initial values...

running calculate on model (any error reports that follow may simply reflect missing values in model variab:
checking model sizes and dimensions...
model building finished.



2. Build the MCMC

phip.mcmc.configuration <- configureMCMC(hmm.phip)

===== Monitors =====
thin = 1: phi, p, z
===== Samplers =====
RW sampler (2)

- phi

- P

posterior_predictive sampler (39)
- z[] (39 elements)
categorical sampler (1103)
- z[] (11083 elements)

phip.mcmc <- buildMCMC(phip.mcmc.configuration)



3. Compile the model and MCMC

phip.model <- compileNimble(hmm.phip)

compiling... this may take a minute. Use 'showCompilerOQOutput = TRUE' to see C++ cor

compilation finished.
c.phip.mcmc <- compileNimble(phip.mcmc, project = phip.model)

compiling... this may take a minute. Use 'showCompilerOQOutput = TRUE' to see C++ cor
compilation finished.



4. Run the MCMC

samples <- runMCMC(c.phip.mcmc, niter = 1000)

running chain 1...

# Alternative:
# c.phip.mcmecSrun(1066)
# samples <- as.matrix(c.phip.mcmcSmvSamples)



5. Look at results

summary (samples[, "phi"])

Min. 1st Qu. Median Mean 3rd Qu. Max.
0.4236 ©0.5472 0©0.5687 0.5698 0.5795 0.7440

summary (samples[, "p"])

Min. 1st Qu. Median Mean 3rd Qu. Max.
0.5468 0.8803 0.8961 ©0.8771 ©0.9128 0.9686



Why is it useful?



Use and debug model in R

e Makes your life easier when it comes to debugging

e |nspect variables

hmm.phipSgamma

[, 1] [,2]
[1,] ©.4235601 0.5764399
[2,] ©.0000000 1.0600000

e Calculate likelihood
hmm.phipScalculate()

[1] -1466.893



Example of debugging a model in R

e Pretend an impossible state was given in inits, making a dead bird alive again.
phip.modelScalculate("z")
[1] -Inf

c(phip.modelScalculate("z[5,]"),
phip.modelScalculate("z[6,]1"))

[1] -3.883928 -Inf
phip.modelSz[6, ]

[1] 1121222



Open the hood, and change/modify/write samplers

e Slice samplers instead of Metropolis-Hastings.

e Samplers on alog scale, especially for a variance, standard deviation, or precision
parameter.

e Blocking correlated parameters.
e To know all samplers available in Nimble, type in help(samplers).
e Source code for samplers and distributions is in R and can be copied and modified.

e Use compareMCMCs package to compare options (including Stan and Jags!).


https://github.com/nimble-dev/compareMCMCs

Consider a model with wing length and individual
random effect on survival.



hmm.phiwlrep <- nimbleCode ({
p ~ dunif(@, 1) # prior detection

omegal[1,1] <- 1 - p
omegal[1,2] <- p
omegal[2,1] <- 1

omegal[2,2] <- ©
for (i in 1:N){

# Pr(alive t -> non-detected t)
# Pr(alive t -> detected t)
# Pr(dead t -> non-detected t)
# Pr(dead t -> detected t)

logit(phi[i]) <- beta[1] + beta[2] * winglength[i] + eps[i]

eps[i] ~ dnorm(mean

0, sd = sdeps)

gamma[1,1,i] <- phi[i] # Pr(alive t -> alive t+17)
gamma[1,2,i] <- 1 - phi[i] # Pr(alive t -> dead t+1)
gamma[2,1,i] <- © # Pr(dead t -> alive t+1)
gamma[2,2,i] <- 1 # Pr(dead t -> dead t+7)

}

beta[1] ~ dnorm(mean
beta[2] ~ dnorm(mean
sdeps ~ dunif(@, 10)

sd
sd

9,
9,

5)

delta[1] <- 1 # Pr(alive t = 1) =1
delta[2] <- © # Pr(dead t = 1) = @
# likelihood
for (i in 1:N){
z[i,first[i]] ~ dcat(delta[1:2])
for (j in (first[i]+1):T){
z[i,j] ~ dcat(gamma[z[i, j-1], 1:2, i])

y[i,j] ~ dcat(omegal[z[i,j], 1:2])
}
}



Trace plot for standard deviation of the random effect
(default sampler)



Change samplers

e Good sampling strategies depend on the model and data. What are the samplers used
by default?

mcmcConf <- configureMCMC(hmm.phiwlrep.m)

===== Monitors =====
thin = 1: p, beta, sdeps, z
===== Samplers =====
RW sampler (259)
- P
- beta[] (2 elements)
- sdeps
- eps[] (255 elements)
posterior_predictive sampler (78)
- eps[] (39 elements)
- z[] (39 elements)
categorical sampler (1103)
- z[] (1163 elements)



Remove default sampler, and use slice sampler

mcmcConfSremoveSamplers( ' sdeps')
mcmcConfSaddSampler(target = 'sdeps',

type = "slice")
mcmcConf

===== Monitors =====
thin = 1: p, beta, sdeps, z
===== Samplers =====
slice sampler (1)
- sdeps
RW sampler (258)
- P
- beta[] (2 elements)
- eps[] (255 elements)
posterior_predictive sampler (78)
- eps[] (39 elements)
- z[] (39 elements)
categorical sampler (1103)
- z[] (1103 elements)



Trace plot for standard deviation of the random effect
(slice sampler)



Which is better?

e MCMC efficiency depends on both mixing and computation time.
e MCMC efficiency = Effective Sample Size (ESS) / computation time.

e MCMC efficiency is the number of effectively independent posterior samples
generated per second.

e ESSis different for each parameter. (Computation time is the same for each
parameter.)

e ESS canbe estimated from packages coda or mcmcse. These give statistical
estimates, so different runs will give different estimates.

e Efficiency with default sampler =25.7/21.53=1.19.

e Efficiency with slice sampler = 19.24/19.39 = 0.99.



Block sampling
e High correlationin (regression) parameters may make independent samplers
inefficient.

0.2

beta?2
o
o

chain 1
-0.2

chain 2

-0.4

-0.25 0.00 0.25 0.50
beta1

e Block sampling (propose candidate values from multivariate distribution) might help.



Block sampling

e Remove and replace independent RW samples by block sampling. Then proceed as
usual.

mcmcConfSremoveSamplers(c( 'beta[1]"', 'betal[2]"))
mcmcConfSaddSampler(target = c('beta[1]"', 'betal[2]"),
type = "RW_block")



Block sampling

mcmcConf

===== Monitors =====
thin = 1: p, beta, sdeps, z
===== Samplers =====
slice sampler (1)
- sdeps
RW_block sampler (1)
- beta[1], beta[2]
RW sampler (256)
- P
- eps[] (255 elements)
posterior_predictive sampler (78)
- eps[] (39 elements)
- z[] (39 elements)
categorical sampler (1103)
- z[] (1103 elements)



Summary of strategies for improving MCMC

e Choose better initial values.

e Customize sampler choice (more in Chapter 7 of the User's manual).

e Reparameterize, e.g. standardize covariates, deal with parameter redundancy.
e Rewrite the model.

o Vectorize to improve computational efficiency (not covered).

o Avoid long chains of deterministic dependencies.

o Marginalize to remove parameters

o Use new functions and new distributions written as nimbleFunctions.

e Write new samplers that take advantage of particular model structures (not covered).

e Using multiple cores with parallelization: see how-to at https://r-
nimble.org/nimbleExamples/parallelizing_ NIMBLE.html


https://r-nimble.org/html_manual/cha-mcmc.html
https://r-nimble.org/nimbleExamples/parallelizing_NIMBLE.html

Marginalization

e User-defined distributions is another neat feature of Nimble.

o |ntegrate over latent states if those are not the focus of ecological inference
(marginalization).

e Marginalization often (but not always) improves MCMC. See Ponisio et al. 2020 for
examples.

The nimbleEcology package implements capture-recapture models and HMMs with
marginalization.


https://onlinelibrary.wiley.com/doi/full/10.1002/ece3.6053
https://cran.r-project.org/web/packages/nimbleEcology/vignettes/Introduction_to_nimbleEcology.html

Our model ((I)Aa (I)Ba WVAB> VBA> PA> pB)

multisite <- nimbleCode({

# Likelihood
for (i in T:N){
# Define latent state at first capture
z[i,first[i]] <- y[i,first[i]] - 1
for (t in (first[i]+1):K){
# State process: draw S(t) given S(t-17)
z[i,t] ~ dcat(gamma[z[i,t-1],1:3])
# Observation process: draw 0O(t) given S(t)
y[i,t] ~ dcat(omegalz[i,t],1:3])

})



Same model with nimbleEcology

multisite <- nimbleCode({

for(i in 1:N) {
init[i, 1:4] <- gamma[ y[i, first[i] ] - 1, 1:4 ]
}

for (i in 1:N){
y[i, (first[i]+1):K] ~ dHMM(init = init[i,1:4],
probObs = omegal[1:4,1:4],
probTrans = gammal[1:4,1:4],
len = K - first[i],
checkRowSums = 0)

e This runs twice as fast as the standard formulation with explicit latent states.

e Marginalizing typically gives better mixing.



Reducing redundant calculations

e Sofar, arow of the dataset is an individual. However, several individuals may share
the same encounter history.

e The contribution of M individuals with the same encounter history is the likelihood of
this particular encounter history raised to the power M.

e Using this so-called weighted likelihood greatly decreases the computational burden.

e Thisideais used in most computer programs that implement maximum likelihood. In
the Bayesian framework, the same idea was proposed in Turek et al. (2016).

e Cannot be donein Jags. Can be done in nimble thanks to nimble functions!

e Therunis much faster. Also allows fitting models to big datasets. More details in
dedicated Worksheet.


https://doi.org/10.1007/s10651-016-0353-z

No live demo, but there is a worksheet.




Future directions for NIMBLE

e NIMBLE is under active development. Contributors are welcome, including those
who want to get involved but don't know where.

e Faster building of models and algorithms. Ability to save and re-load compiled work.

e Automatic differentiation of model calculations, enabling Hamiltonian Monte Carlo,
other sampling strategies, and Laplace approximation.

e Tools for building packages that use NIMBLE "under the hood".



Further reading

e Turek, D.,de Valpine, P. & Paciorek, C.J. Efficient Markov chain Monte Carlo sampling
for hierarchical hidden Markov models Environ Ecol Stat 23: 549-564 (2016).

e Ponisio, L.C., de Valpine, P., Michaud, N., and Turek, D. One size does not fit all:
Customizing MCMC methods for hierarchical models using NIMBLE Ecol Evol. 10:
2385-2416 (2020).

e Nimble workshop to come 26-28 May, check out here.
e Nimble workshop material online available here.

e Nimble manual and cheatsheet.


https://doi.org/10.1007/s10651-016-0353-z
https://doi.org/10.1002/ece3.6053
https://r-nimble.org/nimble-virtual-short-course-may-26-28
https://github.com/nimble-training
https://r-nimble.org/html_manual/cha-welcome-nimble.html
https://r-nimble.org/cheatsheets/NimbleCheatSheet.pdf

Conclusions

The team

last updated: 2021-05-15



Take-home messages and recommendations



Make the best of your data with HMMs

e Hereis asearchable list of HMM analyses of capture-recapture data.

e This list is not exhaustive, please get in touch with us if you'd like to add a reference.


http://127.0.0.1:5667/applistHMM.html

Bayesian capture-recapture analysis with HMMs

Make your ecological question explicit.

Think of observations and states first.

Then write down the observation and transition matrices on paper.

Start simple, all parameters constant for example. Make sure convergence is reached.

Add complexity one step at a time.



Bayesian capture-recapture analysis with HMMs

e Use simulations to better understand your model.

Nimble models can be used to simulate data, check out this tutorial.

Do not try to optimize your code. Make it work first, then think of optimization.

"Premature optimization is the root of all evil" - Donald Knuth (creator of TeX
and author of "The Art of Computer Programming")

Read Bayesian workflow by Gelman et al. (2021).


https://r-nimble.org/nimbleExamples/simulation_from_model.html
https://stackify.com/premature-optimization-evil/
https://en.wikipedia.org/wiki/The_Art_of_Computer_Programming
https://arxiv.org/abs/2011.01808

Till next time

e The Slack space will remain for some time. Happy to answer questions you might have
related to the workshop.

o Website will be updated with

o video recordings
o your feedbacks
o a FAQ section based on your questions

e Abookisonits way. More in 2022 hopefully.



